將一副直角三角板ABC和EDF如圖放置(其中∠A=60°,∠F=45°),使點(diǎn)E落在AC邊上,且ED∥BC,則∠CEF的度數(shù)為( 。
分析:求出∠DEF,根據(jù)平行線性質(zhì)求出∠DEC,相減即可求出答案.
解答:解:∵∠D=90°,DE=DF,
∴∠DEF=∠DFE=45°,
∵DE∥BC,
∴∠DEC=∠ACB=30°,
∴∠CEF=∠DEF-∠DEC=45°-30°=15°,
故選C.
點(diǎn)評(píng):本題考查了平行線的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,注意:平行線的性質(zhì)是:①兩直線平行,同位角相等,②兩直線平行,內(nèi)錯(cuò)角相等,③兩直線平行,同旁?xún)?nèi)角互補(bǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、將一副直角三角板DEF按如圖1擺放,使直角頂點(diǎn)D落在等腰Rt△ABC的斜邊BC的中點(diǎn)上,DF,DE分別與AB,AC交于點(diǎn)M,N;
(1)如果把圖1中的△DCN繞點(diǎn)D順時(shí)方向旋轉(zhuǎn)180o,得到圖2,在不添加任何輔助線的情況下,圖2中除△DCN≌△DBG外,你還能找到一對(duì)全等的三角形嗎?寫(xiě)出你的結(jié)論并說(shuō)明理由;
(2)將三角板DEF繞點(diǎn)D旋轉(zhuǎn),①當(dāng)M,N分別在AB,AC上時(shí),線段BM,CN,MN之間有一個(gè)確定的等量關(guān)系.請(qǐng)你寫(xiě)出這個(gè)關(guān)系式(不需證明);
②如圖3當(dāng)點(diǎn)M,N分別在BA,AC的延長(zhǎng)線上時(shí),①的關(guān)系式是否仍然成立?寫(xiě)出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海)將一副直角三角板如圖擺放,點(diǎn)C在EF上,AC經(jīng)過(guò)點(diǎn)D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,則∠CDF=
25°
25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•山西)問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:
等腰三角形的三線合一(等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合)
等腰三角形的三線合一(等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合)

依據(jù)2:
角平分線上的點(diǎn)到角的兩邊的距離相等
角平分線上的點(diǎn)到角的兩邊的距離相等

(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線上,F(xiàn)D的延長(zhǎng)線與CA的延長(zhǎng)線垂直相交于點(diǎn)M,BC的延長(zhǎng)線與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一次數(shù)學(xué)活動(dòng)課上,數(shù)學(xué)老師在同一平面內(nèi)將一副直角三角板如圖位置擺放,點(diǎn)C在FD的延長(zhǎng)線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,試求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:將一副直角三角板(Rt△ABC和Rt△DEF)如圖1所示的方式擺放.其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N.探究線段OM與ON的數(shù)量關(guān)系.
小聰同學(xué)的思路是:連接OC,構(gòu)造全等三角形,經(jīng)過(guò)推理使問(wèn)題得到解決.

請(qǐng)你參考小聰同學(xué)的思路,探究并解決下列問(wèn)題:
(1)直接寫(xiě)出上面問(wèn)題中線段OM與ON的數(shù)量關(guān)系;
(2)將這幅直角三角板如圖2所示的方式擺放.使點(diǎn)D落在BA的延長(zhǎng)線上,DE∥AC,F(xiàn)D的延長(zhǎng)線與CA的延長(zhǎng)線交于點(diǎn)M,BC的延長(zhǎng)線與DE交于點(diǎn)N.點(diǎn)O是AB的中點(diǎn).連接ON、OM、MN.請(qǐng)你判斷線段OM與ON的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案