【題目】對于自變量為的函數(shù),當(dāng)時,其函數(shù)值也為,則稱點為此函數(shù)的不動點.若函數(shù)圖象上有兩個不動點、,.
(1)若,,,求函數(shù)的不動點坐標(biāo);
(2)求證;;
(3)若函數(shù),,,當(dāng)時,
①求證:;
②求證:.
【答案】(1),(2)證明見解析(3)①證明見解析③證明見解析
【解析】
(1)先求出函數(shù)解析式,再令y=x2+2x=x,解x即可;
(2)證明出函數(shù)的最小值,根據(jù)不動點定義即可證明;
(3)①②進(jìn)行作差運算,得到二次函數(shù),根據(jù)二次函數(shù)圖象的性質(zhì)進(jìn)行證明即可.
(1)∵,,.
∴.
令
∴,即,.
∴,
(2)證明:∵的頂點坐標(biāo)是
∵
∴
∵是不動點
∴.∴
∴
(3)①證明:令
∵是開口向上,與軸有兩個交點的二次函數(shù)
∴當(dāng)時,隨著增大而減小
∴當(dāng)時
∴.即
②證明:令的對稱軸
∴
∵
∴
由(2)得
∴即
∴當(dāng)時,
在時,隨著增大而增大
當(dāng)時
∴
當(dāng)時
∵當(dāng)時,對應(yīng)項相與當(dāng)時對應(yīng)項相等.
∴對應(yīng)
最大值只能由當(dāng)時,求當(dāng)時取得
∴當(dāng)時
隨著增大而增大
∴對應(yīng).
∴最大,則最大
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應(yīng)點A2坐標(biāo)為(-2,-6),請畫出平移后對應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=ADAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級一班20名女生某次體育測試的成績統(tǒng)計如下:
成績(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)如果這20名女生體育成績的平均分?jǐn)?shù)是82分,求x、y的值;
(2)在(1)的條件下,設(shè)20名學(xué)生測試成績的眾數(shù)是a,中位數(shù)是b,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為2,點在上,四邊形也是正方形,以為圓心,長為半徑畫,連結(jié),,則圖中陰影部分面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD、DEFG都是正方形,邊長分別為m、n(m<n).坐標(biāo)原點O為AD的中點,A、D、E在y軸上.若二次函數(shù)y=ax2的圖象過C、F兩點,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表
分組 | 頻數(shù) |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中a= ,b= ,樣本成績的中位數(shù)落在 范圍內(nèi);
(2)請把頻數(shù)分布直方圖補充完整;
(3)該校九年級共有1000名學(xué)生,估計該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學(xué)校為了消除安全隱患,決定對斜坡CD進(jìn)行改造,在保持坡腳C不動的情況下,學(xué)校至少要把坡頂D向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的邊OC在x軸正半軸上,點B的坐標(biāo)為(8,4).
(1)請求出菱形的邊長;
(2)若反比例函數(shù) 經(jīng)過菱形對角線的交點D,且與邊BC交于點E,請求出點E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com