【題目】在△ABC中,∠A=50°,點(diǎn)D,E分別是邊AC,AB上的點(diǎn)(不與A,B,C重合),點(diǎn)P是平面內(nèi)一動(dòng)點(diǎn)(P與D,E不在同一直線上),設(shè)∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在邊BC上運(yùn)動(dòng)(不與點(diǎn)B和點(diǎn)C重合),如圖(1)所示,則∠1+∠2=________
(用α的代數(shù)式表示).
(2)若點(diǎn)P在ABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關(guān)系?寫(xiě)出你的結(jié)論,并說(shuō)明理由.
(3)當(dāng)點(diǎn)P在邊CB的延長(zhǎng)線上運(yùn)動(dòng)時(shí),試畫(huà)出相應(yīng)圖形,標(biāo)注有關(guān)字母與數(shù)字,并寫(xiě)出對(duì)應(yīng)的∠α,∠1,∠2之間的關(guān)系式.(不需要證明)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是中線,∠BAD=∠B+∠C,tan∠ABC=,則tan∠BAD=________.
【答案】
【解析】延長(zhǎng)AD到E,使AD=DE,CF ,
在與,
, ,所以,
是等腰三角形,s
設(shè)EM= x,DE=11,MC=10,
,
,
x=,
tan∠BAD=.
故答案為.
點(diǎn)睛:倍長(zhǎng)中線法構(gòu)造全等三角形,如圖,AD是中線,令AD=DE,則ADC全等EBD.
【題型】填空題
【結(jié)束】
21
【題目】先化簡(jiǎn),再求值: ÷(-a+2),其中a=2sin60°+3tan45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖像可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,a),點(diǎn)B的坐標(biāo)(b,c),且a、b、c滿足.
(1)若a沒(méi)有平方根,判斷點(diǎn)A在第幾象限并說(shuō)明理由.
(2)連AB、OA、OB,若△OAB的面積大于5而小于8,求a的取值范圍;
(3)若兩個(gè)動(dòng)點(diǎn)M(2m,3m-5),N(n-1,-2n-3),請(qǐng)你探索是否存在以兩個(gè)動(dòng)點(diǎn)M、N為端點(diǎn)的線段MN∥AB,且MN=AB.若存在,求出M、N兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,點(diǎn)為對(duì)角線的中點(diǎn),過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)連接,若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,點(diǎn)M為CD中點(diǎn),將△MBC沿BM翻折至△MBE,若∠AME = α,∠ABE = β,則 α 與 β 之間的數(shù)量關(guān)系為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC,則下列結(jié)論:①abc<0;②;③ac﹣b+1=0;④OAOB=﹣.其中正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為: .
②BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫(xiě)在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請(qǐng)求出GE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),后求值
(1)(2a-3b)(3b+2a)-(a-2b)2,其中:a=-2,b=3;
(2)[(xy+2)(xy-2)-2x2y2+4]÷(xy),其中x=10,y=-.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com