【題目】“校園手機(jī)”現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注.“五一”期間,小記者劉凱隨機(jī)調(diào)查了城區(qū)若干名學(xué)生和家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如圖所示的統(tǒng)計(jì)圖:
(1)求這次調(diào)查的家長(zhǎng)人數(shù),并補(bǔ)全圖①:
(2)求圖②中表示家長(zhǎng)“贊成”的圓心角的度數(shù);
(3)從這次接受調(diào)查的學(xué)生中,隨機(jī)抽查一個(gè),恰好是“無(wú)所謂”態(tài)度的學(xué)生的概率是多少?
(4)為更深入的了解學(xué)生的看法,又從“贊成”的學(xué)生甲、乙、丙、丁四人中隨機(jī)選取2人,請(qǐng)用樹(shù)狀圖法或列表法求出恰好選中甲和乙的概率.
【答案】(1)400,詳見(jiàn)解析;(2)36°;(3)0.15;(4)
【解析】
(1)由扇形統(tǒng)計(jì)圖可知,家長(zhǎng)“無(wú)所謂”占20%,從條形統(tǒng)計(jì)圖可知,“無(wú)所謂”有80人,即可求出這次調(diào)查的家長(zhǎng)人數(shù);
(2)在扇形統(tǒng)計(jì)圖中,每部分占總部分的百分比等于該部分所對(duì)應(yīng)的扇形圓心角的度數(shù)與360°的比,贊成的有40人,則圓心角的度數(shù)可求;
(3)用學(xué)生“無(wú)所謂”30人,除以學(xué)生贊成、無(wú)所謂、反對(duì)總?cè)藬?shù)即可求得其概率.
(4)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學(xué)的情況,再利用概率公式求解即可求得答案.
解:(1)家長(zhǎng)人數(shù)為80÷20%=400,
補(bǔ)全圖①如下:
(2)表示家長(zhǎng)“贊成”的圓心角的度數(shù)為;
(3)學(xué)生恰好持“無(wú)所謂”態(tài)度的概率是.
(4)畫(huà)樹(shù)狀圖得:
∵所有出現(xiàn)的等可能性結(jié)果共有12種,其中滿足條件的結(jié)果有2種.
∴P(恰好選中甲、乙兩位同學(xué))=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),以CD為直徑的⊙O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過(guò)點(diǎn)F作FG⊥AB于點(diǎn)G.
(1)試判斷FG與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)若AC=3,CD=2.5,求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線交x軸于A、B兩點(diǎn),其中點(diǎn)A坐標(biāo)為,與y軸交于點(diǎn)C,且對(duì)稱軸在y軸的左側(cè),拋物線的頂點(diǎn)為P.
(1)當(dāng)時(shí),求拋物線的頂點(diǎn)坐標(biāo);
(2)當(dāng)時(shí),求b的值;
(3)在(1)的條件下,點(diǎn)Q為x軸下方拋物線上任意一點(diǎn),點(diǎn)D是拋物線對(duì)稱軸與x軸的交點(diǎn),直線、分別交拋物線的對(duì)稱軸于點(diǎn)M、N.請(qǐng)問(wèn)是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),其中,.
(1)求拋物線的解析式;
(2)連接,在直線上方的拋物線上有一動(dòng)點(diǎn),連接,與直線相交于點(diǎn),當(dāng)時(shí), 求的值;
(3)點(diǎn)是直線上一點(diǎn),在平面內(nèi)是否存在點(diǎn),使以點(diǎn),,,為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=90°,以AB為直徑的O交BC于D,點(diǎn)E為AC的中點(diǎn),連接DE.
(1)求證:DE是O的切線;
(2)若∠BAD=50°,AC=6,CD=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明遇到這樣一個(gè)問(wèn)題:如圖,矩形紙片ABCD,AB=2,BC=3,現(xiàn)要求將矩形紙片剪兩刀后拼成一個(gè)與之面積相等的正方形,小明嘗試給出了下面四種剪的方法,如圖①②③④,圖中BE=.其中剪法正確的是( 。
A.①②B.①③C.②③D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+15分別交x軸、y軸于點(diǎn)A,B,交直線y=x于點(diǎn)M.動(dòng)點(diǎn)C在直線AB上以每秒3個(gè)單位的速度從點(diǎn)A向終點(diǎn)B運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)D以每秒a個(gè)單位的速度從點(diǎn)0沿OA的方向運(yùn)動(dòng),當(dāng)點(diǎn)C到達(dá)終點(diǎn)B時(shí),點(diǎn)D同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)A的坐標(biāo)和AM的長(zhǎng).
(2)當(dāng)t=5時(shí),線段CD交OM于點(diǎn)P,且PC=PD,求a的值.
(3)在點(diǎn)C的整個(gè)運(yùn)動(dòng)過(guò)程中,
①直接用含t的代數(shù)式表示點(diǎn)C的坐標(biāo).
②利用(2)的結(jié)論,以C為直角頂點(diǎn)作等腰直角△CDE(點(diǎn)C,D,E按逆時(shí)針順序排列),當(dāng)OM與△CDE的一邊平行時(shí),求所有滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=ax-2amx+am2+2m-5與x軸交于A(x1,0),B(x2,0)(x1<x2)兩點(diǎn),頂點(diǎn)為P.
(1)當(dāng)a=1,m=2時(shí),求線段AB的長(zhǎng)度;
(2)當(dāng)a=2,若點(diǎn)P到x軸的距離與點(diǎn)P到y軸的距離相等,求該拋物線的解析式;
(3)若a= ,當(dāng)2m-5≤x≤2m-2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E,F分別在AB,CD上,且,連接EF交BD于點(diǎn)O連接AO.若,,則的度數(shù)為( )
A.50°B.55°C.65°D.75°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com