化簡:
(1)
x3+xy2+1
x3+xy-x2y-y3
x2y-xy2
x3+xy2-x2y-y3
+
x2y+xy2
x3+x2y+xy2+y3
x2y+y3+1
x2y+y3-x3-xy2
+
x3+y3
x3+x2y+xy2+y3

(2)
1
x(x+a)
+
1
(x+a)(x+2a)
+
1
(x+2a)(x+3a)
+
1
(x+3a)(x+4a)

(3)(
b2-bc+c2
a
+
a2
b+c
-
3
1
b
+
1
c
2
b
+
2
c
1
bc
+
1
ca
+
1
ab
+(a+b+c)2

(4)
1
(x-1)(x-2)
+
1
(x-2)(x-3)
+…+
1
(x-n)(x-n-1)
分析:(1)先對(duì)分子、分母進(jìn)行因式分解,再約分,最后通分,實(shí)現(xiàn)化簡.
(2)觀察發(fā)現(xiàn)
a
x(x+a)
=
1
x
-
1
x+a
,
a
(x+a)(x+2a)
=
1
x+a
-
1
x+2a
,
a
(x+2a)(x+3a)
=
1
x+a
-
1
x+2a
,
a
(x+3a)(x+4a)
=
1
x+3a
-
1
x+4a
,
因而將原式轉(zhuǎn)化為
1
a
(
1
x
-
1
x+a
)+
1
a
(
1
x+a
-
1
x+2a
)+
1
a
(
1
x+2a
-
1
x+3a
)+
1
a
(
1
x+3a
-
1
x+4a
)
,再通過提取公因式,求解;
(3)首先將-
3
1
b
+
1
c
轉(zhuǎn)化為-
bc
b+c
再與
a2
b+c
通分,將
2
b
+
2
c
1
bc
+
1
ca
+
1
ab
轉(zhuǎn)化為
2(b+c)a
a+b+c
,再利用乘法的分配律,進(jìn)一步通過通分,最終達(dá)到目的;
(4)觀察發(fā)現(xiàn)
1
(x-1)(x-2)
=
1
x-2
-
1
x-1
,
1
(x-2)(x-3)
=
1
x-3
-
1
x-2
1
(x-n)[x-(n+1)]
=
1
x-(n+1)
-
1
x-n
1
(x-2)(x-3)
=
1
x-3
-
1
x-2
,…,
1
(x-n)[x-(n+1)]
=
1
x-(n+1)
-
1
x-n

將這些式子代入原式.加減抵消相同項(xiàng),最終得到結(jié)果.
解答:解:(1)
原式=
x3+xy2+1
x2(x-y)+y2(x-y)
xy(x-y)
x2(x-y)+y2(x-y)
+
xy(x+y)
x2(x+y)+y2(x+y)
x2y+y3+1
y2(y-x)+x2(y-x)
+
(x+y)(x2-xy+y2)
x2(x+y)+y(x+y)
=
xy(x3+xy2+1)
(x2+y2)(x-y)(x2+y2)
+
xy(x2y+y3+1)
(x2+y2)(x2+y2)(y-x)
+
x2-xy+y2
x2+y2
=
xy[x2(x-y)+y2(x-y)]
(x-y)(x2+y2)2
+
x2-xy+y2
x2+y2
=
x2+y2
x2+y2
=1

(2)∵
a
x(x+a)
=
1
x
-
1
x+a
,
a
(x+a)(x+2a)
=
1
x+a
-
1
x+2a
a
(x+2a)(x+3a)
=
1
x+a
-
1
x+2a
,
a
(x+3a)(x+4a)
=
1
x+3a
-
1
x+4a
,

∴原式=
1
a
(
1
x
-
1
x+a
)+
1
a
(
1
x+a
-
1
x+2a
)+
1
a
(
1
x+2a
-
1
x+3a
)+
1
a
(
1
x+3a
-
1
x+4a
)

=
1
a
(
1
x
-
1
x+4a
)

=
4
x(x+4a)

(3)原式=(
b2-bc+c2
a
+
a2-3bc
b+c
)
2(b+c)
bc
a+b+c
abc
+(a+b+c)2

=(
b2-bc+c2
a
+
a2-3bc
b+c
)•
2(b+c)a
a+b+c
+(a+b+c)2
=
2(b+c)(b2-bc+c2)
a+b+c
+
2a(a2-3bc)
a+b+c
+(a+b+c)2
=
2b3+2c3+2a3-6abc
a+b+c
+(a+b+c)2
=
2(a3+b3+c3-3abc)+(a+b+c)3
a+b+c
=
2(a+b+c)(a2+b2+c2-ab-ac-bc)+(a+b+c)3
a+b+c
=
(a+b+c)(2a2+2b2+2c2-2ab-2ac-2bc+a2+b2+c2+2ab+2ac+2bc)
a+b+c
=
(a+b+c)(3a2+3b2+3c2)
a+b+c
=3a2+3b2+3c2

(4)∵
1
(x-1)(x-2)
=
1
x-2
-
1
x-1
1
(x-2)(x-3)
=
1
x-3
-
1
x-2
1
(x-n)[x-(n+1)]
=
1
x-(n+1)
-
1
x-n

∴原式=
1
x-2
-
1
x-1
+
1
x-3
-
1
x-2
+…+
1
x-(n+1)
-
1
x-n

=
1
x-(n+1)
-
1
x-1
=
n
(x-1)[x-(n+1)]
點(diǎn)評(píng):本題考查分式的混合運(yùn)算,關(guān)鍵是通分,合并同類項(xiàng),注意混合運(yùn)算的運(yùn)算順序.同學(xué)們特別注意(2)中的
a
x(x+a)
=
1
x
-
1
x+a
,
a
(x+a)(x+2a)
=
1
x+a
-
1
x+2a
a
(x+2a)(x+3a)
=
1
x+a
-
1
x+2a
,
a
(x+3a)(x+4a)
=
1
x+3a
-
1
x+4a
,
(4)中
1
(x-1)(x-2)
=
1
x-2
-
1
x-1
,
1
(x-2)(x-3)
=
1
x-3
-
1
x-2
1
(x-n)[x-(n+1)]
=
1
x-(n+1)
-
1
x-n
1
(x-2)(x-3)
=
1
x-3
-
1
x-2
,…,
1
(x-n)[x-(n+1)]
=
1
x-(n+1)
-
1
x-n

有效轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

化簡,3x3-[-5x2+3(x3+
2
3
x2-
1
3
)+4]+3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解不等式組
3x+2>2(x-1)
4x-3≤3x-2

(2)化簡并求值:
x3-xy2
x+y
÷
x2-2xy+y2
x
-
2y+2
y-x
,其中x=2,y=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡求值:(x3-2x2)÷x-(x-2)(x+3),其中x=
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡
(1)[(-x3)]2•(-x23
(2)(-xy2)•(28x4y2z)÷(7x3y)

查看答案和解析>>

同步練習(xí)冊(cè)答案