【題目】設是的平均數,即,則方差,它反映了這組數的波動性,
(1)證明:對任意實數a,x1a,x2a,…,xna,與x1,x2,…,xn 方差相同;
(2)證明;
(3)以下是我校初三(1)班 10 位同學的身高(單位:厘米):
169,172,163,173,175,168,170,167,170,171,計算這組數的方差.
科目:初中數學 來源: 題型:
【題目】已如如圖1,在平面直角坐標系中,點A的坐標為(6,0)、點B的坐標為(0,8),點C在y軸上,作直線AC.點B關于直線AC的對稱點B′剛好在x軸上,連接CB′.
(1)寫出點B′的坐標,并求出直線AC對應的函數表達式;
(2)點D在線段AC上,連接DB、DB′、BB′,當△DBB′是等腰直角三角形時,求點D坐標;
(3)如圖2,在(2)的條件下,點P從點B出發(fā)以每秒2個單位長度的速度向原點O運動,到達點O時停止運動,連接PD,過D作DP的垂線,交x軸于點Q,問點P運動幾秒時△ADQ是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校七、八年級各有10名同學參加市級數學競賽,各參賽選手的成績如下(單位:分):
七年級:89,92,92,92,93,95,95,96,98,98
八年級:88,93,93,93,94,94,95,95,97,98
整理得到如下統計表
年級 | 最高分 | 平均分 | 中位數 | 眾數 | 方差 |
七年級 | 98 | 94 | a | m | 7.6 |
八年級 | 98 | n | 94 | 93 | 6.6 |
根據以上信息,完成下列問題
(1)填空:a= ;m= ;n= ;
(2)兩個年級中, 年級成績更穩(wěn)定;
(3)七年級兩名最高分選手分別記為:A1,A2,八年級第一、第二名選手分別記為B1,B2,現從這四人中,任意選取兩人參加市級經驗交流,請用樹狀圖法或列表法求出這兩人分別來自不同年級的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點P為BC的中點,連接EP,AD.
(1)求證:PE是⊙O的切線;
(2)若⊙O的半徑為3,∠B=30°,求P點到直線AD的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形ABCD中AD∥BC,邊AB=4,BC=8.將此長方形沿EF折疊,使點D與點B重合,點C落在點G處.
(1)試判斷△BEF的形狀,并說明理由;
(2)求△BEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點為平行四邊形的邊上一動點,過點作直線垂直于,且直線與平行四邊形的另一邊交于點.當點從勻速運動時,設點的運動時間為,的面積為,能大致反映與函數關系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A是雙曲線在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為斜邊作等腰Rt△ABC,點C在第二象限,隨著點A的運動,點C的位置也不斷的變化,但始終在一函數圖象上運動,則這個函數的解析式為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=20cm,P、Q、M、N分別從A、B、C、D出發(fā)沿AD、BC、CB、DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時即停止.已知在相同時間內,若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm.
(Ⅰ)當x為何值時,AP、ND長度相等?
(Ⅱ)當x為何值時,以PQ、MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊能構成一個三角形?
(Ⅲ)當x為何值時,以P、Q、M、N為頂點的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線(a≠0)經過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數關系式;
(2)設點P是直線l上的一個動點,當點P到點A、點B的距離之和最短時,求點P的坐標;
(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com