【題目】如圖,長方形ABCD中AD∥BC,邊AB=4,BC=8.將此長方形沿EF折疊,使點D與點B重合,點C落在點G處.
(1)試判斷△BEF的形狀,并說明理由;
(2)求△BEF的面積.
【答案】(1)△BEF是等腰三角形,理由見解析;(2)10.
【解析】
(1)根據(jù)翻折不變性和平行線的性質(zhì)得到兩個相等的角,根據(jù)等角對等邊即可判斷△BEF是等腰三角形;
(2)根據(jù)翻折的性質(zhì)可得BE=DE,BG=CD,∠EBG=∠ADC=90°,設BE=DE=x,表示出AE=8x,然后在Rt△ABE中,利用勾股定理列出方程求出x的值,即為BE的值,再根據(jù)同角的余角相等求出∠ABE=∠GBF,然后利用“角邊角”證明△ABE和△GBF全等,根據(jù)全等三角形對應邊相等可得BF=BE,再根據(jù)三角形的面積公式列式計算即可得解.
(1)△BEF是等腰三角形.
∵ED∥FC,
∴∠DEF=∠BFE,
根據(jù)翻折不變性得到∠DEF=∠BEF,
故∠BEF=∠BFE.
∴BE=BF.
△BEF是等腰三角形;
(2)∵矩形ABCD沿EF折疊點B與點D重合,
∴BE=DE,BG=CD,∠EBG=∠ADC=90°,∠G=∠C=90°,
∵AB=CD,
∴AB=BG,
設BE=DE=x,則AE=AB﹣DE=8﹣x,
在Rt△ABE中,AB2+AE2=BE2,
即42+(8﹣x)2=x2,
解得x=5,
∴BE=5,
∵∠ABE+∠EBF=∠ABC=90°,
∠GBF+∠EBF=∠EBG=90°,
∴∠ABE=∠GBF,
在△ABE和△MBF中,
,
∴△ABE≌△GBF(ASA),
∴BF=BE=5,
∴△EBF的面積=×5×4=10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點C在第二象限,BC與y軸交于點D(0,c),若y軸平分∠BAC,則點C的坐標不能表示為( 。
A. (b+2a,2b) B. (﹣b﹣2c,2b)
C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線y=x2﹣x+與x軸分別交于A、B兩點(A點在B點的左側(cè)),交y軸于點F.
(1)A點坐標為 ;B點坐標為 ;F點坐標為 ;
(2)如圖1,C為第一象限拋物線上一點,連接AC,BF交于點M,若BM=FM,在直線AC下方的拋物線上是否存在點P,使S△ACP=4,若存在,請求出點P的坐標,若不存在,請說明理由;
(3)如圖2,D、E是對稱軸右側(cè)第一象限拋物線上的兩點,直線AD、AE分別交y軸于M、N兩點,若OMON=,求證:直線DE必經(jīng)過一定點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)菱形ABCD中,兩條對角線AC,BD相交于點O,∠MON+∠BCD=180°,∠MON繞點O旋轉(zhuǎn),射線OM交邊BC于點E,射線ON交邊DC于點F,連接EF.
(1)如圖1,當∠ABC=90°時,△OEF的形狀是 ;
(2)如圖2,當∠ABC=60°時,請判斷△OEF的形狀,并說明理由;
(3)在(1)的條件下,將∠MON的頂點移到AO的中點O′處,∠MO′N繞點O′旋轉(zhuǎn),仍滿足∠MO′N+∠BCD=180°,射線O′M交直線BC于點E,射線O′N交直線CD于點F,當BC=4,且時,直接寫出線段CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設是的平均數(shù),即,則方差,它反映了這組數(shù)的波動性,
(1)證明:對任意實數(shù)a,x1a,x2a,…,xna,與x1,x2,…,xn 方差相同;
(2)證明;
(3)以下是我校初三(1)班 10 位同學的身高(單位:厘米):
169,172,163,173,175,168,170,167,170,171,計算這組數(shù)的方差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線經(jīng)過直線與坐標軸的兩個交點.此拋物線與軸的另一個交點為.拋物線的頂點為.
求此拋物線的解析式;
若點為拋物線上一動點,是否存在點.使與的面積相等?若存在,求點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,線段AC繞點A逆時針旋轉(zhuǎn)得到線段AF,CF、BA的延長線交于點E,若∠E=∠FAE,∠ACB=21°,則∠ECD的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前我國建立了比較完善的經(jīng)濟困難學生資助體系.某校去年上半年發(fā)放給每個經(jīng)濟困難學生389元,今年上半年發(fā)放了438元,設每半年發(fā)放的資助金額的平均增長率為,則下面列出的方程中正確的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com