【題目】列方程或方程組解應(yīng)用題:
某中學(xué)為迎接校運(yùn)會(huì),籌集7000元購(gòu)買了甲、乙兩種品牌的籃球共30個(gè),其中購(gòu)買甲品牌籃球花費(fèi)3000元,已知甲品牌籃球比乙品牌籃球的單價(jià)高50%,求乙品牌籃球的單價(jià)及個(gè)數(shù)。
【答案】乙品牌籃球的單價(jià)為200元/個(gè),購(gòu)買了20個(gè).
【解析】試題分析:設(shè)B品牌足球的單價(jià)為x元/個(gè),則A品牌足球的單價(jià)為1.5x元/個(gè),根據(jù)相等關(guān)系:7000元購(gòu)買了A、B兩種品牌的足球共30個(gè),即可得出關(guān)于x的分式方程,求解即可.
試題解析:解:設(shè)乙品牌籃球的單價(jià)為x元,則甲品牌籃球的單價(jià)為1.5x元/個(gè),根據(jù)題意得:
解得:x=200.
經(jīng)檢驗(yàn):x=200是原方程的解,且符合題意.
∴.
答:乙品牌籃球的單價(jià)為200元/個(gè),購(gòu)買了20個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空,完成下列說(shuō)理過(guò)程
如圖,點(diǎn)A,O,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC.
(1)求∠DOE的度數(shù);
(2)如果∠COD=65°,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于C,D兩點(diǎn),與x,y軸交于B,A兩點(diǎn),且tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)x(2x-1)-x2(2-x)的結(jié)果是( )
A.-x3-xB.x3-xC.-x2-1D.x3-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E. F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知△ABC三個(gè)頂點(diǎn)分別為A(﹣1,2)、B(2,1)、C(4,5).
(1)畫出△ABC關(guān)于x對(duì)稱的△A1B1C1;
(2)以原點(diǎn)O為位似中心,在x軸的上方畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2,并求出△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊿ABC中,∠A=40°,∠ACB=104°,BD為AC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).
【答案】32°
【解析】試題分析:根據(jù)三角形的內(nèi)角和定理求出∠ABC,再根據(jù)角平分線的定義求出∠ABE,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式求出∠BED,再根據(jù)直角三角形兩銳角互余列式進(jìn)行計(jì)算即可得解.
試題解析:由三角形內(nèi)角和定理,得∠B+∠ACB+∠BAC=180°,
又∠A=40°,∠ACB=104°,
∴∠ABC=180°-40°-104°=36°,
又∵BE平分∠ABC,
∴∠ABE=∠ABC=18°
∴∠BED=∠A+∠ABE=40°+18°=58°,
又∵∠BED+∠DBE=90°,
∴∠DBE=90°-∠BED=90°-58°=32°.
【題型】解答題
【結(jié)束】
25
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com