【題目】閱讀,我們知道,在數(shù)軸上,x=1表示一個(gè)點(diǎn),而在平面坐標(biāo)系中,x=1表示一條直線;我們還知道,以二元一次方程2x-y+1=0的所有解為坐標(biāo)的點(diǎn)組成的圖形,就是一次函數(shù)y=2x+1的圖象,它也是一條直線,如圖1,可以得出,直線x=1與直線y=2x+1的交點(diǎn)P的坐標(biāo)(1,3)就是方程組的解,所以這個(gè)方程組的解為
在直角坐標(biāo)系中,x≤1表示一個(gè)平面區(qū)域,即直線x=1以及它的左側(cè)的部分,如圖2;y≤2x+1,也表示一個(gè)平面區(qū)域,即直線y=2x+1以及它下方的部分,如圖3.
回答下列問(wèn)題:
(1)在直角坐標(biāo)系(如圖4)中,用作圖的方法求方程組的解;
(2)用陰影表示所圍成的區(qū)域.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過(guò)點(diǎn)E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長(zhǎng);
②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】亞健康是時(shí)下社會(huì)熱門話題,進(jìn)行體育鍛煉是遠(yuǎn)離亞健康的一種重要方式,為了解某校八年級(jí)學(xué)生每天進(jìn)行體育鍛煉的時(shí)間情況,隨機(jī)抽樣調(diào)查了100名初中學(xué)生,根據(jù)調(diào)查結(jié)果得到如圖所示的統(tǒng)計(jì)圖表.
類別 | 時(shí)間t(小時(shí)) | 人數(shù) |
A | t≤0.5 | 5 |
B | 0.5<t≤1 | 20 |
C | 1<t≤1.5 | a |
D | 1.5<t≤2 | 30 |
E | t>2 | 10 |
請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:
(1)a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)小王說(shuō):“我每天的鍛煉時(shí)間是調(diào)查所得數(shù)據(jù)的中位數(shù)”,問(wèn)小王每天進(jìn)行體育鍛煉的時(shí)間在什么范圍內(nèi)?
(4)若把每天進(jìn)行體育鍛煉的時(shí)間在1小時(shí)以上定為鍛煉達(dá)標(biāo),則被抽查學(xué)生的達(dá)標(biāo)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解學(xué)生大課間活動(dòng)的跳繩情況,隨機(jī)抽取了50名學(xué)生每分鐘跳繩的次數(shù)進(jìn)行統(tǒng)計(jì),把統(tǒng)計(jì)結(jié)果繪制成如表和直方圖.
次數(shù) | 70≤x<90 | 90≤x<110 | 110≤x<130 | 130≤x<150 | 150≤x<170 |
人數(shù) | 8 | 23 | 16 | 2 | 1 |
根據(jù)所給信息,回答下列問(wèn)題:
(1)本次調(diào)查的樣本容量是;
(2)本次調(diào)查中每分鐘跳繩次數(shù)達(dá)到110次以上(含110次)的共有的共有人;
(3)根據(jù)上表的數(shù)據(jù)補(bǔ)全直方圖;
(4)如果跳繩次數(shù)達(dá)到130次以上的3人中有2名女生和一名男生,學(xué)校從這3人中抽取2名學(xué)生進(jìn)行經(jīng)驗(yàn)交流,求恰好抽中一男一女的概率(要求用列表法或樹(shù)狀圖寫(xiě)出分析過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分) 甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分. 如圖,甲 在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式 ,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度1.55m.
(1)當(dāng)a= 時(shí),①求h的值.②通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng).
(2)若甲發(fā)球過(guò)網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為 m的Q處時(shí),乙扣球成功,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用水,自來(lái)水公司特制定了新的用水收費(fèi)標(biāo)準(zhǔn),每月用水量,x(噸)與應(yīng)付水費(fèi)(元)的函數(shù)關(guān)系如圖.
(1)求出當(dāng)月用水量不超過(guò)5噸時(shí),y與x之間的函數(shù)關(guān)系式;
(2)某居民某月用水量為8噸,求應(yīng)付的水費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題】如圖①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,則∠BEC=__ __;若∠A=n°,則∠BEC=__ _.
【探究】
(1)如圖②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,則∠BEC=____;
(2)如圖③,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC和∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由;
(3)如圖④,O是外角∠DBC與外角∠BCE的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(只寫(xiě)結(jié)論,不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在甲、乙兩名同學(xué)中選拔一人參加襄陽(yáng)廣播電臺(tái)舉辦“國(guó)學(xué)風(fēng),少年頌”襄陽(yáng)首屆少年兒童經(jīng)典誦讀大賽.在相同的測(cè)試條件下,兩人3次測(cè)試成績(jī)(單位:分)如下:甲:79,86,82;乙:88,79,90.從甲、乙兩人3次的成績(jī)中各隨機(jī)抽取一次成績(jī)進(jìn)行分析,求抽到的兩個(gè)人的成績(jī)都大于80分的概率是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com