【題目】探究:如何把多項式x2+8x+15因式分解?

1)觀察:上式能否可直接利用完全平方公式進行因式分解? 答: ;

(閱讀與理解):由多項式乘法,我們知道(x+a)(x+b)=x2+(a+b)x+ab,將該式從右到左地使用,即可對形如x2+(a+b)x+ab的多項式進行因式分解,即:

x2+(a+b)x+ab=(x+a)(x+b)

此類多項式x2+(a+b)x+ab的特征是二次項系數(shù)為1,常數(shù)項為兩數(shù)之積,一次項系數(shù)為這兩數(shù)之和.

2)猜想并填空: x2+8x+15= x2+[( ) +( )]x + ( )×( )=(x+ )(x+ )

3)上面多項式x2+8x+15的因式分解是否正確,我們需要驗證.請寫出驗證過程.

4)請運用上述方法將下列多項式進行因式分解:

x2+8x+12 x2-x-12

【答案】1)不能;(23,5,3,5,3,5,(3)見解析;(4)① ;②

【解析】

1)根據(jù)是否符合完全平方式的結構特征進行判斷即可;

2)根據(jù)“把一次項系數(shù)分解成兩個數(shù)的和,并且這兩個數(shù)的積等于常數(shù)項”進行填空即可;

3)運用多項式乘以多項式進行驗證即可;

4)根據(jù)前面總結得出的分解因式方法,得出結果即可.

1)∵x2+8x+15不是完全平方式,

x2+8x+15不能用完全平方公式進行因式分解.

故答案為:不能;

2)∵8=5+315=5×3

x2+8x+15= x2+[( 3) +( 5 )]x + ( 3)×( 5)=(x+ 3 )(x+ 5 ),

故答案為:3,5,35,35,

3)(x+3(x+5)

=x2+3x+5x+15

= x2+8x+15;

4)① x2+8x+12

= x2+6+2x+6×2

=x+6(x+2);

x2-x-12

= x2+(3-4)x+[3×(-4)]

=(x-3)(x+4)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一場活動中活動主辦方為了獎勵活動中取得了好成績的參賽選手,計劃購買共100件的甲、乙兩紀念品發(fā)放其中甲種紀念品每件售價120元,乙種紀念品每件售價80元,

1)如果購買甲、乙兩種紀念品一共花費了9600元,求購買甲、乙兩種紀念品各是多少件?

2)設購買甲種紀念品m件,如果購買乙種紀念品的件數(shù)不超過甲種紀念品的數(shù)量的2倍,并且總費用不超過9400元.問組委會購買甲、乙兩種紀念品共有幾種方案?哪一種方案所需總費用最少?最少總費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊 中, , 分別是 , 上的點, , ,則 的面積與 的面積之比等于( )

A.1∶3
B.2∶3
C. ∶2
D. ∶3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CB,DC(或它們的延長線)于點M,N.當∠MAN繞點A旋轉到BM=DN(如圖1),易證BM+DN=MN

(1)∠MAN繞點A旋轉到BM≠DN(如圖2),線段BM,DNMN之間有怎樣的數(shù)量關系?寫出猜想,并加以證明.

(2)∠MAN繞點A旋轉到如圖3的位置時,線段BM,DNMN之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知中,,,點D為直線BC上的一動點D不與點B、C重合,以AD為邊作,使,連接CE

發(fā)現(xiàn)問題:

如圖1,當點D在邊BC上時,

請寫出BDCE之間的位置關系為______,并猜想BCCE、CD之間的數(shù)量關系:______

嘗試探究:

如圖2,當點D在邊BC的延長線上且其他條件不變時,BDCE之間的位置關系、BCCECD之間的數(shù)量關系是否成立?若成立,請證明;若不成立,請寫出新的數(shù)量關系,說明理由;

拓展延伸:

如圖3,當點D在邊CB的延長線上且其他條件不變時,若,,求線段ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(三角形頂點是網(wǎng)格線的交點)和△A1B1C1 , △ABC與△A1B1C1成中心對稱.

(1)畫出△ABC和△A1B1C1的對稱中心O;
(2)將△A1B1C1 , 沿直線ED方向向上平移6格,畫出△A2B2C2;
(3)將△A2B2C2繞點C2順時針方向旋轉90°,畫出△A3B3C3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x、y的方程組給出下列結論

是方程組的解;②無論a取何值,x,y的值都不可能互為相反數(shù)

a=1,方程組的解也是方程x+y=4﹣a的解;④x,y的都為自然數(shù)的解有4

其中正確的個數(shù)為(  

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小美周末來到公園,發(fā)現(xiàn)在公園一角有一種“守株待兔”游戲.游戲設計者提供了一只兔子和一個有A,B,C,D,E五個出入口的兔籠,而且籠內(nèi)的兔子從每個出入口走出兔籠的機會是均等的.規(guī)定:①玩家只能將小兔從A、B兩個出入口放入,②如果小兔進入籠子后選擇從開始進入的出入口離開,則可獲得一只價值5元小兔玩具,否則每玩一次應付費3元.
(1)請用表格或樹狀圖求小美玩一次“守株待兔”游戲能得到小兔玩具的概率;
(2)假設有1000人次玩此游戲,估計游戲設計者可賺多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個半徑為r的圓形紙片在邊長為a( )的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片“不能接觸到的部分”的面積是( )
A.
B.
C.
D.πr2

查看答案和解析>>

同步練習冊答案