【題目】如圖,在等腰中,,過點作于點,交過點直線交于點,且,,連接,若,時,則________.
【答案】
【解析】
作輔助線構建等腰直角三角形和直角三角形,分別得出△BDF和△AFM是等腰直角三角形,得BF=DB=1,AM=FM,根據(jù)sin∠ABC=設未知數(shù),表示BM和AM的長,列方程得出各線段的長,并證出AG是△EFC的中位線,由此得出結論.
過A作AM⊥BC,垂足為M,延長AD、CB交于F,取FC的中點G,連接AG,
∵∠ADB=135°,
∴∠BDF=180°-135°=45°,
∴△BDF是等腰直角三角形,
∴BF=DB=1,
由勾股定理得:DF=,
在Rt△AFM中,∵∠F=45°,
∴AM=FM,
設AM=2x,AB=5x,則BM=x,
由AM=FM得:x+1=2x,
x=,
∴BM=MC=x=1,AM=2,
∵AM⊥BC,DB⊥BC,
∴DB∥AM,
∵FB=BM,
∴FD=AD,
∵AE=2AD,
∴AE=AF,
∴AG是△EFC的中位線,
∴EC=2AG,
∵MG=,
由勾股定理得:AG==,
∴EC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為點D,E.(1)求證:△ACD≌△CBE;(2)若BE=5,AD=12,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙二人做某種機械零件,已知每小時甲比乙少做8個,甲做120個所用的時間與乙做150個所用的時間相等.
(1)甲、乙二人每小時各做零件多少個?
(2)甲做幾小時與乙做4小時所做機械零件數(shù)相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于、兩點,點在軸的負半軸,點在軸的正半軸,與軸交于點,且,,.則下列判斷中正確的是( )
A. 此拋物線的解析式為
B. 當時,隨著的增大而增大
C. 此拋物線與直線只有一個交點
D. 在此拋物線上的某點,使的面積等于,這樣的點共有三個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,.、是邊、邊上的動點,從出發(fā)向運動,同時以相同的速度從出發(fā)向運動,運動到停止.為中點.
試探究的形狀,并說明理由.
在運動過程中,四邊形可能成為正方形嗎?如能求正方形的邊長.
當為多少時,的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年3月12日是第41個植樹節(jié),某單位積極開展植樹活動,決定購買甲、乙兩種樹苗,用800元購買甲種樹苗的棵數(shù)與用680元購買乙種樹苗的棵數(shù)相同,乙種樹苗每棵比甲種樹苗每棵少6元.
(1)求甲種樹苗每棵多少元?
(2)若準備用3800元購買甲、乙兩種樹苗共100棵,則至少要購買乙種樹苗多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】深圳市某學校抽樣調查,A類學生騎共享單車,B類學生坐公交車、私家車等,C類學生步行,D類學生(其它),根據(jù)調查結果繪制了不完整的統(tǒng)計圖.
類型 | 頻數(shù) | 頻率 |
A | 30 | |
B | 18 | 0.15 |
C | 0.40 | |
D |
(1)學生共________人, ________, ________;
(2)補全條形統(tǒng)計圖;
(3)若該校共有2000人,騎共享單車的有________人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△在平面直角坐標系中的位置如圖所示.
(1)作出△關于軸對稱的△,并寫出△各頂點的坐標;
(2)將△向右平移6個單位,作出平移后的△,并寫出△各頂點的坐標;
(3)觀察△和△,它們是否關于某直線對稱?若是,請用粗線條畫出對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽查的樣本容量是 ;
(2)在扇形統(tǒng)計圖中,“主動質疑”對應的圓心角為 度;
(3)將條形統(tǒng)計圖補充完整;
(4)如果該地區(qū)初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com