【題目】請將使結(jié)論成立的條件或理由填寫在橫線上或括號(hào)內(nèi).
如圖,中,是邊的中點(diǎn),過點(diǎn)作 , 交的延長線于點(diǎn).
求證:是的中點(diǎn).
證明: (已知)
是邊的中點(diǎn)
在和中
是的中點(diǎn).
【答案】∠B ∠BCE 兩直線平行,內(nèi)錯(cuò)角相等 BD CD 中點(diǎn)的性質(zhì) BD CD ∠ABD ∠ECD ASA AD ED 全等三角形對應(yīng)邊相等.
【解析】
由平行線的性質(zhì)得出∠B=∠DCE,由中點(diǎn)的性質(zhì)得出BD=CD,由ASA證明△ABD≌△ECD得出AD=ED,經(jīng)得出結(jié)論.
證明:∵CE∥AB(已知)
∴∠B=∠DCE(兩直線平行,內(nèi)錯(cuò)角相等)
∵D是邊BC的中點(diǎn)
∴BD=CD=(中點(diǎn)的性質(zhì))
在△ABD和△ECD中,
,
∴△ABD≌△ECD(ASA)
∴AD=ED(全等三角形的對應(yīng)邊相等)
∴D是AE的中點(diǎn).
故答案為:∠B,∠DCE;兩直線平行,內(nèi)錯(cuò)角相等;BD,CD,中點(diǎn)的性質(zhì);∠B,∠DCE;BD=CD;ASA;全等三角形的對應(yīng)邊相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時(shí)不能擋光.如圖,某舊樓的一樓窗臺(tái)高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時(shí)陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校需要添置教師辦公桌椅A、B兩型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)求A,B兩型桌椅的單價(jià);
(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要運(yùn)費(fèi)10元.設(shè)購買A型桌椅x套時(shí),總費(fèi)用為y元,求y與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)求出總費(fèi)用最少的購置方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰直角三角形,AB=AC,AD是斜邊的中線,E、F分別是AB、AC邊上的點(diǎn)且DE⊥DF.
(1)求證:△AED≌△CFD;
(2)若BE=8,CF=6,求△DEF的面積;
(3)若AB=a,AE=x,請用含x,a的代數(shù)式表示△DEF的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)請你畫出函數(shù)y=x2-4x+10的圖象,由圖象你能發(fā)現(xiàn)這個(gè)函數(shù)具有哪些性質(zhì)?
(2)通過配方變形,說出函數(shù)y=-2x2+8x-8的圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo),這個(gè)函數(shù)有最大值還是最小值?這個(gè)值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點(diǎn),若CF=1,F(xiàn)D=2,則BC的長為【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB=CD,AD=BC,過O點(diǎn)的直線交AD于E,交BC于F,圖中全等三角形有( )
A. 4對 B. 5對 C. 6對 D. 7對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知∠AOB和一條定長線段a,在∠AOB內(nèi)找一點(diǎn)P,使點(diǎn)P到OA,OB的距離都等于a,作法如下:
①在∠AOB內(nèi)作OB的垂線段NH,使NH=a,H為垂足;②過N作NM∥OB;③作∠AOB的平分線OP,與NM交于點(diǎn)P;④點(diǎn)P即為所求.其中③的依據(jù)是( )
A. 平行線之間的距離處處相等 B. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上
C. 角的平分線上的點(diǎn)到角的兩邊的距離相等 D. 線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,,cm,cm,若以C為圓心,以2cm為半徑作圓,則點(diǎn)A在⊙C_____;點(diǎn)B在⊙C________;若以AB為直徑作⊙O,則點(diǎn)C在⊙O_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com