【題目】如圖AB=CD,AD=BC,過O點的直線交AD于E,交BC于F,圖中全等三角形有( 。
A. 4對 B. 5對 C. 6對 D. 7對
【答案】C
【解析】
由條件可判定四邊形ABCD為平行四邊形,則可知O為AC、BD、EF的中點,可知△ABO≌△CDO,△ABC≌△CDA,△AEO≌△CFO,△EOD≌△FOB,△AOD≌△BOC,△ABD≌△CDB,共6組.
在△ABD和△CDB中,
,
∴△ABD≌△CDB(SSS),
同理可得△ABC≌△CDA,
∵AB=CD,AD=BC,
∴四邊形ABCD為平行四邊形,
∴OA=OC,OB=OD,
在△AOB和△COD中,
,
∴△AOB≌△BOD(SAS),
同理可得△BOC≌△DOA,
由平行四邊形的性質(zhì)可得AD∥BC,
∴∠EAO=∠FCO,∠AEO=∠CFO,
在△AEO和△CFO中,
∴△AEO≌△CFO(AAS),
同理可得△DOE≌△BOF,
所以共有六組.
故答案選C.
科目:初中數(shù)學 來源: 題型:
【題目】小明和爸爸周末步行去游泳館游冰,爸爸先出發(fā)了一段時間后小明才出發(fā),途中小明在離家1400米處的報亭休息了一段時間后繼續(xù)按原來的速度前往游泳館.兩人離家的距離y(米)與小明所走時間x(分鐘)之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象信息解答下列問題:
(1)小明出發(fā)_____分鐘后第一次與爸爸相遇;
(2)分別求出爸爸離家的距離y1和小明到達報亭前離家的距離y2與時間x之間的函數(shù)關(guān)系式;
(3)求小明在報亭休息了多長時間遇到姍姍來遲的爸爸;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)戶種植一種經(jīng)濟作物,總用水量y(m3)與種植時間x(天)之間的函數(shù)關(guān)系如圖所示.
(1)第20天的總用水量為 m3;
(2)當x≥20時,求y與x之間的函數(shù)表達式;
(3)種植時間為多少天時,總用水量達到7 000 m3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,以直角頂點A為圓心,AB長為半徑畫弧交BC于點D,過D作DE⊥AC于點E.若DE=a,則△ABC的周長用含a的代數(shù)式表示為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(3x2y)2(﹣15xy3)÷(﹣9x4y2)
(2)(2a﹣3)2﹣(1﹣a)2
(3)先化簡,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB的兩個端點坐標分別為A(1,1),B(2,1),以原點O為位似中心,將線段AB放大后得到線段CD.若CD=2,則端點C的坐標為( 。
A.(2,2)
B.(2,4)
C.(3,2)
D.(4,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學活動課上,小敏.小穎分別畫了△ABC和△DEF , 尺寸如圖 . 如果兩個三角形的面積分別記作S△ABC.S△DEF , 那么它們的大小關(guān)系是( 。
A.S△ABC>S△DEF
B.S△ABC<S△DEF
C.S△ABC=S△DEF
D.不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】連接四邊形不相鄰兩個頂點的線段叫做四邊形的對角線,如圖1,四邊形ABCD中線段AC、線段BD就是四邊形ABCD 的對角線.把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD的平方和與BC,AD的平方和之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)______
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com