【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B4,0),C0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)Px軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M

1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

2)求證:ACB=90°;

3)在點(diǎn)P運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使得BQM是直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由;

4)連接AC,將AOC繞平面內(nèi)某點(diǎn)H順時(shí)針旋轉(zhuǎn)90°,得到A1O1C1,點(diǎn)AO、C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1C1、若A1O1C1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為和諧點(diǎn),請(qǐng)直接寫出和諧點(diǎn)的個(gè)數(shù)和點(diǎn)A1的橫坐標(biāo).

【答案】1y=﹣+x+2;(2)見解析;(3Q3,2)或Q(﹣1,0);(4)兩個(gè)和諧點(diǎn); A1的橫坐標(biāo)是1;.

【解析】

1)把點(diǎn)A1,0)、B4,0)、C0,3)三點(diǎn)的坐標(biāo)代入函數(shù)解析式,利用待定系數(shù)法求解;

2)先求出AB、AC、BC的長(zhǎng)度,根據(jù)勾股定理即可證明;

3)分兩種情況分別討論,當(dāng)∠QBM90°或∠MQB90°,即可求得Q點(diǎn)的坐標(biāo).

4)兩個(gè)和諧點(diǎn);AO1OC2,設(shè)A1x,y),則C1x+2,y1),O1xy1),當(dāng)A1、C1在拋物線上時(shí)和O1、C1在拋物線上時(shí),分兩種情況列方程組可得A1的橫坐標(biāo).

1)設(shè)拋物線解析式為yax2+bx+c,

將點(diǎn)A(﹣1,0),B4,0),C0,2)代入解析式,

,

;

2)證明:∵,,, ,即∠ACB=90°;

3點(diǎn)C與點(diǎn)D關(guān)于x軸對(duì)稱,∴D0,﹣2).

設(shè)直線BD的解析式為ykx2

將(40)代入得:4k20,

∴k直線BD的解析式為yx2

當(dāng)P點(diǎn)與A點(diǎn)重合時(shí),△BQM是直角三角形,此時(shí)Q(﹣10);

當(dāng)BQ⊥BD時(shí),△BQM是直角三角形,

則直線BQ的直線解析式為y=﹣2x+8,

,可求x3x4(舍)

∴x3

∴Q3,2)或Q(﹣1,0);

4)兩個(gè)和諧點(diǎn);

AO1,OC2,

設(shè)A1x,y),則C1x+2,y1),O1x,y1),

當(dāng)A1、C1在拋物線上時(shí),

,

∴A1的橫坐標(biāo)是1;

當(dāng)O1、C1在拋物線上時(shí),

,,

∴A1的橫坐標(biāo)是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點(diǎn)E,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△DCF的位置,并延長(zhǎng)BE交DF于點(diǎn)G.

(1)求證:△BDG∽△DEG;

(2)若EGBG=4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,D為弧AC的中點(diǎn),DGABG,交ACE,ACBD相交于F

1)求證:AEDE;

2)若AG2DG4,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn).已知反比例函數(shù)的圖象經(jīng)A(﹣2,m),過點(diǎn)作ABx軸.垂足為點(diǎn)B,且△OAB的面積為1

1)求km的值;

2)點(diǎn)Cx,y)在反比例的圖象上,當(dāng)1x3時(shí),求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi), 的三個(gè)頂點(diǎn)坐標(biāo)分別為 (2,-4), (4,-4), (1,-1).

(1)畫出關(guān)于軸對(duì)稱的,直接寫出點(diǎn)的坐標(biāo);

(2)畫出繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后的

(3)在(2)的條件下,求線段掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)P是邊長(zhǎng)為2的正方形ABCD的對(duì)角線BD上的動(dòng)點(diǎn),過點(diǎn)P分別作PEBC于點(diǎn)EPFDC于點(diǎn)F,連接AP并延長(zhǎng),交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EFAH于點(diǎn)G,當(dāng)點(diǎn)PBD上運(yùn)動(dòng)時(shí)(不包括BD兩點(diǎn)),以下結(jié)論中:①MFMC;②APEF;③AHEF;④AP2PMPH;⑤EF的最小值是.其中正確結(jié)論有( )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過原點(diǎn)OA8,0)、C0,6)作矩形OABC,連接AC,一個(gè)直角三角形PDE的直角頂點(diǎn)P始終在對(duì)角線AC上運(yùn)動(dòng)(不與AC重合),且保持一邊PD始終經(jīng)過矩形頂點(diǎn)B,PEx軸于點(diǎn)Q

1______;

2)在點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)A的過程中,的值是否發(fā)生變化?如果變化,請(qǐng)求出其變化范圍,如果不變,請(qǐng)說明理由,并求出其值;

3)若將QAB沿直線BQ折疊后,點(diǎn)A與點(diǎn)P重合,則PC的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接ACBC,DB,DC,

(1)求拋物線的函數(shù)表達(dá)式;

(2)△BCD的面積等于△AOC的面積的時(shí),求的值;

(3)(2)的條件下,若點(diǎn)M軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)舉辦抽獎(jiǎng)活動(dòng),規(guī)則如下:在不透明的袋子中有2個(gè)紅球和2個(gè)黑球,這些球除顏色外都相同,顧客每次摸出一個(gè)球,若摸到紅球,則獲得1份獎(jiǎng)品,若摸到黑球,則沒有獎(jiǎng)品。

1)如果小芳只有一次摸球機(jī)會(huì),那么小芳獲得獎(jiǎng)品的概率為  ;

2)如果小芳有兩次摸球機(jī)會(huì)(摸出后不放回),求小芳獲得2份獎(jiǎng)品的概率。(請(qǐng)用畫樹狀圖列表等方法寫出分析過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案