【題目】如圖 1,在平面直角坐標系中,A,B,D 三點的坐標是(0,2),(-2,0),(1,0),點C 是 x 軸下方一點,且 CD⊥AD,∠BAD+∠BCD=180°,AD=CD
(1)求證:BD 平分∠ABC
(2)求四邊形 ABCD 的面積
(3)如圖 2,BE 是∠ABO 的鄰補角的平分線,連接 AE,OE 交 AB 于點 F,若∠AEO=45°,求證:AF=AO.
【答案】(1)證明見解析;(2);(3)證明見解析;
【解析】
(1)過C作DM⊥BD于M,根據AAS判定△CDM≌△DOA,通過線段和差推出BM=MC=1得出∠CBD=45°進而得到∠CBD=∠ABO=45°即可證BD 平分∠ABC;
(2)將,再根據三角形的面積公式計算即可;
(3)過點E作作EH⊥x軸于點H,EG⊥BC于點G,根據角平分線的性質得到EH=EG,證明△EAG≌△EOH,得到EA=EO,根據等腰三角形的判定定理解答.
證明:(1)∵A(0,2)B(-2,0)D(1,0)
∴OA=OB=2,OD=1
∴∠ABO=∠BAO=45°
過C作DM⊥BD于M
∴∠CMD=90°
∴∠1+∠3=90°
∵CD⊥AD
∴∠ADC=90°
∴∠1+∠2=90°
∴∠2=∠3
又∵CD=AD,∠CMD=∠AOD =90°
∴△CDM≌△DOA
∴CM=OD=1,MD=AO=2
∴OM=1
∴BM=1
∴BM=MC=1
∴∠CBD=45°
∴∠CBD=∠ABO=45°
∴BD 平分∠ABC
(2)由(1)得A(0,2),B(-2,0),C(-1,-1),M(-1,0)
∴BD=3,AO=2,CM=1
∴
∴
(3)過點E作EH⊥x軸于點H,EG⊥BA于點G,
∴∠EHO=∠EGA =90°
∵E點在∠ABO的鄰補角的平分線上,EH⊥HO,EG⊥BA
∴EH=EG,
∵∠ABO=∠AEO=45,
∴∠EAG=∠EOH,
在△EAG和EOH中,
∴△EAG≌△EOH(AAS),
∴EA=EO,
∵∠AEO=45°,
∴∠EAO=∠EOA=67.5°,
∵∠OAB=45°,
∴∠AFO=180°-∠OAB-∠AOE=67.5°
∴∠AOE=∠AFO=67.5°,
∴AF=AO
科目:初中數學 來源: 題型:
【題目】如圖,在下面直角坐標系中,已知,,三點,其中、、滿足關系式,.
(1)求、、的值;
(2)如果在第二象限內有一點,請用含的式子表示四邊形的面積;
(3)在(2)的條件下,是否存在點,使四邊形的面積與的面積相等?若存在,求出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+(b﹣4)2=0
(1)求a,b的值;
(2)在y軸上是否存在一點M,使△COM的面積=△ABC的面積,求出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC 中,點 D,E 分別在∠ABC 和∠ACB 的平分線上,連接 BD,DE,EC,若∠D+∠E=295°, 則∠A 是( )
A.65°B.60°C.55°D.50°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解本校八年級學生數學學習情況,隨機抽查該年級若干名學生進行測試,然后把測試結果分為4個等級:A、B、C、D,并將統(tǒng)計結果繪制成兩幅不完整的統(tǒng)計圖,請根據圖中的信息解答下列問題
(1)補全條形統(tǒng)計圖
(2)等級為D等的所在扇形的圓心角是 度
(3)如果八年級共有學生1800名,請你估算我校學生中數學學習A等和B等共多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點O,與BC相交于點N,連接BM、DN.
求證:四邊形BMDN是菱形;
若,,求菱形BMDN的面積和對角線MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分線分別交BC,CD于E、F.
(1)試說明△CEF是等腰三角形.
(2)若點E恰好在線段AB的垂直平分線上,試說明線段AC與線段AB之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A,B,與軸交于點C。過點C作CD∥x軸,交拋物線的對稱軸于點D,連結BD。已知點A坐標為(-1,0)。
(1)求該拋物線的解析式;
(2)求梯形COBD的面積。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com