【題目】如圖,兩塊完全一樣的含30°角的直角三角板,將它們重疊在一起并繞其較長(zhǎng)直角邊的中點(diǎn)M轉(zhuǎn)動(dòng),使上面一塊三角板的斜邊剛好過下面一塊三角板的直角頂點(diǎn)C.已知AC=4,則這兩塊直角三角板頂點(diǎn)A、A′之間的距離等于___________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分線交于點(diǎn)E,∠AEC等于( )
A.56° B.66° C.76° D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykxb的圖象與x軸交點(diǎn)為 A3,0,與y軸交點(diǎn)為 B ,且與正比例函數(shù)的圖象交于點(diǎn)C(m,4).
(1)求點(diǎn)C 的坐標(biāo);
(2)求一次函數(shù)ykxb的表達(dá)式;
(3)利用圖象直接寫出當(dāng)x取何值時(shí),kxb>.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PC交⊙O于A,C兩點(diǎn),AB是⊙O的直徑,AD平分∠PAB交⊙O于點(diǎn)D,過D作DE垂直PA,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若AE=1,AC=4,求直徑AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請(qǐng)判斷并說明理由;
(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;
(3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)△ABC為直角三角形時(shí),寫出點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖1,拋物線y=ax2+bx+2與x軸交于A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,連接AC,BC.D為坐標(biāo)平面第四象限內(nèi)一點(diǎn),且使得△ABD與△ABC全等.
(1)求拋物線的表達(dá)式.
(2)請(qǐng)直接寫出點(diǎn)D的坐標(biāo),并判斷四邊形ACBD的形狀.
(3)如圖2,將△ABD沿y軸的正方形以每秒1個(gè)單位長(zhǎng)度的速度平移,得到△A′B′D′,A′B′與BC交于點(diǎn)E,A′D′與AB交于點(diǎn)F.連接EF,AB′,EF與AB′交于點(diǎn)G.設(shè)運(yùn)動(dòng)的時(shí)間為t(0≤t≤2)秒.
①當(dāng)直線EF經(jīng)過拋物線的頂點(diǎn)T時(shí),請(qǐng)求出此時(shí)t的值;
②請(qǐng)直接寫出點(diǎn)G經(jīng)過的路徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,點(diǎn)E在BC上,以CE為直徑的⊙O交AB于點(diǎn)F,AO∥EF
(1)求證:AB是⊙O的切線;
(2)如圖2,連結(jié)CF交AO于點(diǎn)G,交AE于點(diǎn)P,若BE=2,BF=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)學(xué)活動(dòng)課上,小麗為了測(cè)量校園內(nèi)旗桿AB的高度,站在教學(xué)樓的C處測(cè)得旗桿底端B的俯角為45°,測(cè)得旗桿頂端A的仰角為30°.已知旗桿與教學(xué)樓的距離BD=9m,請(qǐng)你幫她求出旗桿的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,射線AP在△ABC的外側(cè),點(diǎn)B關(guān)于AP的對(duì)稱點(diǎn)為D,連接CD交射線AP于點(diǎn)E,連接BE.
(1)根據(jù)題意補(bǔ)全圖形;
(2)求證:CD=EB+EC;
(3)求證:∠ABE=∠ACE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com