【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3).
(1)求二次函數(shù)解析式;
(2)若點(diǎn)Q為拋物線上一點(diǎn),且S△ABQ=S△ACQ,求點(diǎn)Q的坐標(biāo);
(3)若直線l:y=mx+n與拋物線有兩個(gè)交點(diǎn)M,N(M在N的左邊),P為拋物線上一動(dòng)點(diǎn)(不與M,N重合).過P作PH平行于y軸交直線l于點(diǎn)H,若=5,求m的值.
【答案】(1)y=x2﹣2x﹣3;(2)點(diǎn)Q的坐標(biāo)為(,﹣)或(,);(3)m=±2.
【解析】
(1)拋物線與y軸交于點(diǎn)C(0,-3),則c=-3,將點(diǎn)B的坐標(biāo)代入拋物線表達(dá)式并解得:b=-2,即可求解;
(2)分點(diǎn)Q在x軸下方、點(diǎn)Q在x軸上方兩種情況,分別求解即可;
(3)MH=(t-x1),同理:NH=(x2-t),MHMN=(m2+1)(mt+n-t2+2t+3)=(m2+1)PH,即可求解.
解:(1)拋物線與y軸交于點(diǎn)C(0,﹣3),則c=﹣3,
將點(diǎn)B的坐標(biāo)代入拋物線表達(dá)式并解得:b=﹣2,
故拋物線的表達(dá)式為:y=x2﹣2x﹣3;
(2)設(shè):點(diǎn)Q(m,m2﹣2m﹣3),
①當(dāng)點(diǎn)Q在x軸下方時(shí),如圖1,
S△ACQ=×4×(﹣m2+2m+3),
S△ABQ=S△AOC+S△QOC﹣S△AOQ=﹣×3×m﹣×1×(﹣m2+2m+3)=m2+m,
則:×4×(﹣m2+2m+3)=m2+m,
解得:m=或﹣1(舍去﹣1),故點(diǎn)P(,﹣);
②當(dāng)點(diǎn)Q在x軸上方時(shí),如圖2,
取AC的中點(diǎn)E(﹣,﹣),
S△ABQ=S△ACQ,則點(diǎn)E、B到AQ的距離相等,BE∥AQ,
直線BE的表達(dá)式中的k值為:,
同理直線BQ的表達(dá)式為:y=x+,
∴,
解得:x=或﹣1(舍去﹣1),
故點(diǎn)Q(,);
綜上,點(diǎn)Q的坐標(biāo)為:(,﹣)或(,);
(3)過點(diǎn)H作x軸的平行線RH,過點(diǎn)M、N分別作RH的垂線交于點(diǎn)R、S,
設(shè)點(diǎn)M、N的橫坐標(biāo)分別為x1,x2,點(diǎn)P(t,t2﹣2t﹣3),則點(diǎn)H(m,mt+n),
則PH=mt+n﹣t2+2t+3,
聯(lián)立直線與拋物線的表達(dá)式并整理得:
x2﹣(m+2)x﹣3﹣n=0,
則x1+x2=m+2,x1x2=﹣3﹣n
直線M、N的k值為m,即tan∠RHM=m=tanα,則cosα=,
∴MH=(t﹣x1),同理:NH=(x2﹣t),
∴MHMN=(m2+1)(mt+n﹣t2+2t+3)=(m2+1)PH,
而,則m2+1=5,
解得:m=±2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣4x+n(x>0)的圖象記為G1,將G1繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)180°得到圖象G2,圖象G1和G2合起來記為圖象G.
(1)若點(diǎn)P(﹣1,2)在圖象G上,求n的值.
(2)當(dāng)n=﹣1時(shí).
①若Q(t,1)在圖象G上,求t的值.
②當(dāng)k≤x≤3(k<3)時(shí),圖象G對(duì)應(yīng)函數(shù)的最大值為5,最小值為﹣5,直接寫出k的取值范圍.
(3)當(dāng)以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)為頂點(diǎn)的矩形ABCD的邊與圖象G有且只有三個(gè)公共點(diǎn)時(shí),直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是上一動(dòng)點(diǎn),連接AP,作∠APC=45°,交弦AB于點(diǎn)C.AB=6cm.
小元根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)線段AP,PC,AC的長(zhǎng)度進(jìn)行了測(cè)量.
下面是小元的探究過程,請(qǐng)補(bǔ)充完整:
(1)下表是點(diǎn)P是上的不同位置,畫圖、測(cè)量,得到線段AP,PC,AC長(zhǎng)度的幾組值,如下表:
AP/cm | 0 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PC/cm | 0 | 1.21 | 2.09 | 2.69 | m | 2.82 | 0 |
AC/cm | 0 | 0.87 | 1.57 | 2.20 | 2.83 | 3.61 | 6.00 |
①經(jīng)測(cè)量m的值是 (保留一位小數(shù)).
②在AP,PC,AC的長(zhǎng)度這三個(gè)量中,確定的長(zhǎng)度是自變量,的長(zhǎng)度和 的長(zhǎng)度都是這個(gè)自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△ACP為等腰三角形時(shí),AP的長(zhǎng)度約為 cm(保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司根據(jù)市場(chǎng)需求銷售A、B兩種型號(hào)的凈水器,每臺(tái)A型凈水器比每臺(tái)B型凈水器進(jìn)價(jià)多200元,用5萬(wàn)元購(gòu)進(jìn)A型凈水器與用4.5萬(wàn)元購(gòu)進(jìn)B型凈水器的數(shù)量相等.
(1)求每臺(tái)A型、B型凈水器的進(jìn)價(jià)各是多少元?
(2)該公司計(jì)劃用不超過9.8萬(wàn)元購(gòu)進(jìn)A,B兩種型號(hào)的凈水器共50臺(tái),其中A型、B型凈水器每臺(tái)售價(jià)分別為2500元、2180元,設(shè)A型凈水器為x臺(tái).
①求x的取值范圍.
②若公司決定從銷售A型凈水器的利潤(rùn)中每臺(tái)捐獻(xiàn)a(100<a<150)元給貧困村飲水改造愛心工程,求售完這50臺(tái)凈水器后獲得的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)可以自由轉(zhuǎn)動(dòng)的質(zhì)地均勻轉(zhuǎn)盤都被分成了3個(gè)全等的扇形,在每一扇形內(nèi)均標(biāo)有不同的自然數(shù),如圖所示,轉(zhuǎn)動(dòng)轉(zhuǎn)盤,兩個(gè)轉(zhuǎn)盤停止后觀察并記錄兩個(gè)指針?biāo)干刃蝺?nèi)的數(shù)字(若指針停在扇形的邊線上,當(dāng)作指向上邊的扇形).
(1)用列表法或畫樹形圖法求出同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤一次的所有可能結(jié)果;
(2)同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤一次,求“記錄的兩個(gè)數(shù)字之和為7”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:t1,t2是方程t2+2t﹣24=0的兩個(gè)實(shí)數(shù)根,且t1<t2,拋物線y=x2+bx+c的圖象經(jīng)過點(diǎn)A(t1,0),B(0,t2).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)點(diǎn)P(x,y)是拋物線上一動(dòng)點(diǎn),且位于第三象限,四邊形OPAQ是以OA為對(duì)角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當(dāng)平行四邊形OPAQ的面積為24時(shí),是否存在這樣的點(diǎn)P,使OPAQ為正方形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)M為二次函數(shù)y=x2+2bx+3c圖象的頂點(diǎn),一次函數(shù)y=kx﹣3(k>0)分別交x軸,y軸于點(diǎn)A,B.
(1)若b=1,c=1,判斷頂點(diǎn)M是否在直線y=2x+1上,并說明理由;
(2)若該二次函數(shù)圖象經(jīng)過點(diǎn)C(1,﹣4),也經(jīng)過點(diǎn)A,B,且滿足kx﹣3<x2+2bx+3c,求該一次函數(shù)解析式,并直接寫出自變量x的取值范圍;
(3)設(shè)點(diǎn)P坐標(biāo)為(m,n)在二次函數(shù)y=x2+2bx+3c上,當(dāng)﹣2≤m≤2時(shí),b﹣24≤n≤2b+4,試問:當(dāng)b≥2或b≤﹣2時(shí),對(duì)于該二次函數(shù)中任意的自變量x,函數(shù)值y是否始終大于﹣40?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達(dá)到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長(zhǎng)率;
(2)若年平均增長(zhǎng)率保持不變,2019年該貧困戶的家庭年人均純收入是否能達(dá)到4200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點(diǎn)A的直線PC交⊙O于A,C兩點(diǎn),AD平分∠PAB,射線AD交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥PA于點(diǎn)E.
(1)求證:ED為⊙O的切線;
(2)若AB=10,ED=2AE,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com