已知:如圖,AB是⊙O直徑,OD⊥弦BC于點F,且交⊙O于點E,若∠AEC=∠ODB.
(1)求證:BD是⊙O的切線;
(2)當(dāng)AB=10,BC=8時,求BD的長.
精英家教網(wǎng)

精英家教網(wǎng)
(1)證明:連接AC,
∵AB是⊙O的直徑
∴∠ACB=90°
又∵OD⊥BC
∴ACOE
∴∠CAB=∠EOB


AC
對的圓周角相等
∴∠AEC=∠ABC
又∵∠AEC=∠ODB
∴∠ODB=∠OBC
∴△DBF△OBD
∴∠OBD=90°
即BD⊥AB
又∵AB是直徑
∴BD是⊙O的切線.

(2)∵OD⊥弦BC于點F,且點O圓心,
∴BF=FC
∴BF=4
由題意OB是半徑即為5
∴在直角三角形OBF中OF為3
由以上(1)得到△DBF△OBD
BD
BF
=
OB
OF

即得BD=
20
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點,過點M作DM⊥AB,交弦AC于點E,交⊙O于點F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點C,AD⊥MN于D,AD交⊙O于E,AB的延長線交MN于點P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點E是
AD
的中點,連接BE交AC于點G,BG的垂直平分線CF交BG于H交AB于F點.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點B的弦BD⊥OC交⊙O于點D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當(dāng)BC=BD,且BD=12cm時,求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊答案