一個半徑為R的球的內(nèi)部被挖去一個棱長為a的小正方體,則余下的幾何體的體積是________.

 

答案:
解析:

-a3

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)善于思考的小迪發(fā)現(xiàn):半徑為a,圓心在原點的圓(如圖1),如果固定直徑AB,把圓內(nèi)的所有與y軸平行的弦都壓縮到原來的
b
a
倍,就得到一種新的圖形-橢圓(如圖2).她受祖沖之“割圓術”的啟發(fā),采用“化整為零,積零為整”、“化曲為直,以直代曲”的方法,正確地求出了橢圓的面積,她求得的結(jié)果為
 
;
(2)小迪把圖2的橢圓繞x軸旋轉(zhuǎn)一周得到一個“精英家教網(wǎng)雞蛋型”的橢球.已知半徑為a的球的體積為
4
3
πa3,則此橢球的體積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一場籃球比賽中,一球星將球出手時,球離地面
20
9
米,球的運行軌跡為拋物線,當球運行的水平距離為4米時,球到達的最高點離地4米.
(1)建立適當?shù)钠矫嬷苯亲鴺讼担沟们虺鍪謺r的坐標是(0,
20
9
),球運行的最高點坐標為(4,4),求出此坐標系中球的運行軌跡拋物線對應的函數(shù)關系式(不要求寫取值范圍);
(2)若球投入了離地面3米高的籃筐,請求籃筐離球星(坐標原點)的水平距離;
(3)如圖,在籃球場地面以籃筐正下方點O為圓心一些同心的半圓弧,半圓弧上有一些投籃點,相鄰的半圓之間寬度1 米,最內(nèi)半圓弧的半徑為r 米,其上每0.2π米的弧長上都是該球星投籃命中率較高的點(含半圓弧的兩端點),其它半圓上的命中率較高的點個數(shù)與最內(nèi)半圓弧上的個數(shù)相同,若該球星在(1)中投球站立的位置恰好在最外面的一個半圓弧上,求當r為多少時,投籃的同心半圓弧中投籃命中率較高的點的個數(shù)最多?

查看答案和解析>>

科目:初中數(shù)學 來源:2007年初中畢業(yè)升學考試(浙江臺州卷)數(shù)學(解析版) 題型:填空題

(1)善于思考的小迪發(fā)現(xiàn):半徑為,圓心在原點的圓(如圖1),如果固定直徑,把圓內(nèi)的所有與軸平行的弦都壓縮到原來的倍,就得到一種新的圖形橢圓(如圖2),她受祖沖之“割圓術”的啟發(fā),采用“化整為零,積零為整”“化曲為直,以直代曲”的方法.正確地求出了橢圓的面積,她求得的結(jié)果為     

(2)(本小題為選做題,做對另加3分,但全卷滿分不超過150分)小迪把圖2的橢圓繞軸旋轉(zhuǎn)一周得到一個“雞蛋型”的橢球.已知半徑為的球的體積為,則此橢球的體積為      

 

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(36)(解析版) 題型:填空題

(2007•臺州)(1)善于思考的小迪發(fā)現(xiàn):半徑為a,圓心在原點的圓(如圖1),如果固定直徑AB,把圓內(nèi)的所有與y軸平行的弦都壓縮到原來的倍,就得到一種新的圖形-橢圓(如圖2).她受祖沖之“割圓術”的啟發(fā),采用“化整為零,積零為整”、“化曲為直,以直代曲”的方法,正確地求出了橢圓的面積,她求得的結(jié)果為    ;
(2)小迪把圖2的橢圓繞x軸旋轉(zhuǎn)一周得到一個“雞蛋型”的橢球.已知半徑為a的球的體積為πa3,則此橢球的體積為   

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省中考真題 題型:填空題

(1)善于思考的小迪發(fā)現(xiàn):半徑為a,圓心在原點的圓(如圖1),如果固定直徑AB,把圓內(nèi)的所有與y軸平行的弦都壓縮到原來的倍,就得到一種新的圖形-橢圓(如圖2),她受祖沖之“割圓術”的啟發(fā),采用“化整為零,積零為整”、“化曲為直,以直代曲”的方法,正確地求出了橢圓的面積,她求得的結(jié)果為(    );
(2)小迪把圖2的橢圓繞x軸旋轉(zhuǎn)一周得到一個“雞蛋型”的橢球,已知半徑為a的球的體積為,則此橢球的體積為(    )。

查看答案和解析>>

同步練習冊答案