在一場(chǎng)籃球比賽中,一球星將球出手時(shí),球離地面
20
9
米,球的運(yùn)行軌跡為拋物線,當(dāng)球運(yùn)行的水平距離為4米時(shí),球到達(dá)的最高點(diǎn)離地4米.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使得球出手時(shí)的坐標(biāo)是(0,
20
9
),球運(yùn)行的最高點(diǎn)坐標(biāo)為(4,4),求出此坐標(biāo)系中球的運(yùn)行軌跡拋物線對(duì)應(yīng)的函數(shù)關(guān)系式(不要求寫取值范圍);
(2)若球投入了離地面3米高的籃筐,請(qǐng)求籃筐離球星(坐標(biāo)原點(diǎn))的水平距離;
(3)如圖,在籃球場(chǎng)地面以籃筐正下方點(diǎn)O為圓心一些同心的半圓弧,半圓弧上有一些投籃點(diǎn),相鄰的半圓之間寬度1 米,最內(nèi)半圓弧的半徑為r 米,其上每0.2π米的弧長(zhǎng)上都是該球星投籃命中率較高的點(diǎn)(含半圓弧的兩端點(diǎn)),其它半圓上的命中率較高的點(diǎn)個(gè)數(shù)與最內(nèi)半圓弧上的個(gè)數(shù)相同,若該球星在(1)中投球站立的位置恰好在最外面的一個(gè)半圓弧上,求當(dāng)r為多少時(shí),投籃的同心半圓弧中投籃命中率較高的點(diǎn)的個(gè)數(shù)最多?
分析:(1)設(shè)拋物線頂點(diǎn)式解析式為y=a(x-4)2+4,然后利用待定系數(shù)法求二次函數(shù)解析式解答即可;
(2)令y=3,解關(guān)于x的一元二次方程,求出縱坐標(biāo)是3的點(diǎn)的坐標(biāo),即可得到球星距離坐標(biāo)原點(diǎn)的水平距離為7米;
(3)根據(jù)弧長(zhǎng)公式求出最內(nèi)半圓弧上的命中率較高的點(diǎn)的個(gè)數(shù),再表示出到該球星所站的位置所在的最外面的弧線的條數(shù),然后列式整理,再根據(jù)二次函數(shù)的最值問題解答即可.
解答:解:(1)∵最高點(diǎn)坐標(biāo)為(4,4),
∴設(shè)拋物線頂點(diǎn)式解析式為y=a(x-4)2+4,
∵球的出手點(diǎn)坐標(biāo)為(0,
20
9
),
∴16a+4=
20
9
,
解得a=-
1
9
,
所以,函數(shù)關(guān)系式為y=-
1
9
(x-4)2+4;

(2)當(dāng)y=3時(shí),-
1
9
(x-4)2+4=3,
整理得,(x-4)2=9,
解得x1=1,x2=7,
∵球到達(dá)過最高點(diǎn)(4,4),
∴籃筐的坐標(biāo)為(7,3),
∴籃筐距離球星的水平距離為7米;

(3)∵每0.2π米的弧長(zhǎng)上都是該球星投籃命中率較高的點(diǎn)(含半圓弧的兩端點(diǎn)),
∴最內(nèi)半圓弧上的命中率較高的點(diǎn)的個(gè)數(shù)為:
πr
0.2π
+1=5r+1,
共有弧線條數(shù)為:7-r+1=8-r,
所以,投籃命中率較高的點(diǎn)的個(gè)數(shù)=(5r+1)(8-r)=-5r2+39r+8,
∵-
b
2a
=-
39
2×(-5)
=3.9,
∴半徑r=4米時(shí),投籃命中率較高的點(diǎn)的個(gè)數(shù)最多,
最大多的點(diǎn)數(shù)為:-5×42+39×4+8=84.
點(diǎn)評(píng):本題考查了二次函數(shù)的應(yīng)用,主要利用了待定系數(shù)法求二次函數(shù)解析式,已知函數(shù)值求自變量的值的方法,二次函數(shù)的最值問題,(3)確定出最內(nèi)半圓弧上點(diǎn)的個(gè)數(shù)與弧線的條數(shù)是解題的關(guān)鍵,也是本題容易出錯(cuò)之處.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

李明是學(xué)校的籃球小明星,在一場(chǎng)籃球比賽中,他一人得了21分,如果他投進(jìn)的2分球比3分球多3個(gè),那么他一共投了( 。﹤(gè)2分球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

李強(qiáng)是學(xué)校的籃球明星,在一場(chǎng)籃球比賽中,他一人獨(dú)得23分(沒有罰球得分),如果他投進(jìn)的2分球比3 分球多4個(gè),那么他在這場(chǎng)比賽中投進(jìn)的2分球共有
7
7
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶在一場(chǎng)籃球比賽中,一球星將球出手時(shí),球離地面數(shù)學(xué)公式米,球的運(yùn)行軌跡為拋物線,當(dāng)球運(yùn)行的水平距離為4米時(shí),球到達(dá)的最高點(diǎn)離地4米.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使得球出手時(shí)的坐標(biāo)是(0,數(shù)學(xué)公式),球運(yùn)行的最高點(diǎn)坐標(biāo)為(4,4),求出此坐標(biāo)系中球的運(yùn)行軌跡拋物線對(duì)應(yīng)的函數(shù)關(guān)系式(不要求寫取值范圍);
(2)若球投入了離地面3米高的籃筐,請(qǐng)求籃筐離球星(坐標(biāo)原點(diǎn))的水平距離;
(3)如圖,在籃球場(chǎng)地面以籃筐正下方點(diǎn)O為圓心一些同心的半圓弧,半圓弧上有一些投籃點(diǎn),相鄰的半圓之間寬度1 米,最內(nèi)半圓弧的半徑為r 米,其上每0.2π米的弧長(zhǎng)上都是該球星投籃命中率較高的點(diǎn)(含半圓弧的兩端點(diǎn)),其它半圓上的命中率較高的點(diǎn)個(gè)數(shù)與最內(nèi)半圓弧上的個(gè)數(shù)相同,若該球星在(1)中投球站立的位置恰好在最外面的一個(gè)半圓弧上,求當(dāng)r為多少時(shí),投籃的同心半圓弧中投籃命中率較高的點(diǎn)的個(gè)數(shù)最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省武漢市硚口區(qū)中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

在一場(chǎng)籃球比賽中,一球星將球出手時(shí),球離地面米,球的運(yùn)行軌跡為拋物線,當(dāng)球運(yùn)行的水平距離為4米時(shí),球到達(dá)的最高點(diǎn)離地4米.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使得球出手時(shí)的坐標(biāo)是(0,),球運(yùn)行的最高點(diǎn)坐標(biāo)為(4,4),求出此坐標(biāo)系中球的運(yùn)行軌跡拋物線對(duì)應(yīng)的函數(shù)關(guān)系式(不要求寫取值范圍);
(2)若球投入了離地面3米高的籃筐,請(qǐng)求籃筐離球星(坐標(biāo)原點(diǎn))的水平距離;
(3)如圖,在籃球場(chǎng)地面以籃筐正下方點(diǎn)O為圓心一些同心的半圓弧,半圓弧上有一些投籃點(diǎn),相鄰的半圓之間寬度1 米,最內(nèi)半圓弧的半徑為r 米,其上每0.2π米的弧長(zhǎng)上都是該球星投籃命中率較高的點(diǎn)(含半圓弧的兩端點(diǎn)),其它半圓上的命中率較高的點(diǎn)個(gè)數(shù)與最內(nèi)半圓弧上的個(gè)數(shù)相同,若該球星在(1)中投球站立的位置恰好在最外面的一個(gè)半圓弧上,求當(dāng)r為多少時(shí),投籃的同心半圓弧中投籃命中率較高的點(diǎn)的個(gè)數(shù)最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案