【題目】一次函數y1=kx+b和y2=﹣4x+a的圖象如圖所示,且A(0,4),C(﹣2,0).
(1)由圖可知,不等式kx+b>0的解集是 ;
(2)若不等式kx+b>﹣4x+a的解集是x>1.
①求點B的坐標;
②求a的值.
【答案】(1)x>﹣2;(2)①(1,6);②10.
【解析】
(1)求不等式kx+b>0的解集,找到x軸上方的范圍就可以了,比C點橫坐標大就行了
(2)①我們可以先根據B,C兩點求出k值,因為不等式kx+b>﹣4x+a的解集是x>1
所以B點橫坐標為1,利用x=1代入y1=kx+b,即求出B點的坐標;
②將B點代入y2=﹣4x+a中即可求出a值.
解:(1)∵A(0,4),C(﹣2,0)在一次函數y1=kx+b上,
∴不等式kx+b>0的解集是x>﹣2,
故答案為:x>﹣2;
(2)①∵A(0,4),C(﹣2,0)在一次函數y1=kx+b上,
∴ ,得,
∴一次函數y1=2x+4,
∵不等式kx+b>﹣4x+a的解集是x>1,
∴點B的橫坐標是x=1,
當x=1時,y1=2×1+4=6,
∴點B的坐標為(1,6);
②∵點B(1,6),
∴6=﹣4×1+a,得a=10,
即a的值是10.
科目:初中數學 來源: 題型:
【題目】甲乙兩個工程隊共同修建一條公路,從兩端同時開始,到工程結束時,甲工程 隊共施工了天,乙隊在中途接到緊急任務停止施工一段時間,回來后按照以前的施工 速度繼續(xù)施工至結束,設甲、乙兩工程隊各自施工的長度分別為(米),(米),甲 隊施工的時間為(天),,與之間的函數圖象如圖所示.
(1)這條公路的總長度是______米;
(2)求乙隊在恢復施工后,與之間的函數表 達式;
(3)求在修建該條公路的過程中,甲、乙兩隊共同修建完米長時甲隊施工的天數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖△ABC的頂點坐標分別為A(-4,-3),B(0,-3),C(-2,1),如將B點向右平移2個單位后再向上平移4個單位到達B1點,若設△ABC的面積為S1 , △AB1C的面積為S2 , 則S1 , S2的大小關系為( )
A.S1>S2
B.S1=S2
C.S1<S2
D.不能確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為解決部分市民冬季集中取暖問題需鋪設一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設實際每天鋪設管道x米,則可得方程 ,根據此情景,題中用“…”表示的缺失的條件應補為( )
A.每天比原計劃多鋪設10米,結果延期15天才完成
B.每天比原計劃少鋪設10米,結果延期15天才完成
C.每天比原計劃多鋪設10米,結果提前15天才完成
D.每天比原計劃少鋪設10米,結果提前15天才完成
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以坐標原點O為圓心,作半徑為2的圓,若直線y=﹣x+b與⊙O相交,則b的取值范圍是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D的切線分別交AB,AC的延長線于E,F,連接BD.
(1)求證:AF⊥EF;
(2)若AC=6,CF=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點C,E是AB上一點,延長CE交⊙O于點D.
(1)如圖①,求∠T和∠CDB的大;
(2)如圖②,當BE=BC時,求∠CDO的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,三個半圓依次相外切,它們的圓心都在x軸的正半軸上并與直線y=x相切,設半圓C1、半圓C2、半圓C3的半徑分別是r1、r2、r3 , 則當r1=1時,r3= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】整式運算
(1)(x4)3÷(﹣x2)2+(﹣x2)3x2
(2)(x+3)(x﹣5)+2x(3x﹣1)
(3)(2b﹣a)(2a+b)﹣2(3a﹣2b)2
(4).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com