【題目】一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機(jī)摸出一個(gè)小球記下數(shù)為x,小穎在剩下的3個(gè)球中隨機(jī)摸出一個(gè)小球記下數(shù)為y,這樣確定了點(diǎn)P的坐標(biāo)(x,y).

(1)小紅摸出標(biāo)有數(shù)3的小球的概率是多少?.

(2)請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法表示出由x,y確定的點(diǎn)P(x,y)所有可能的結(jié)果.

(3)求點(diǎn)P(x,y)在函數(shù)y=﹣x+5圖象上的概率.

【答案】(1);(2)共12種情況(3)

【解析】

1)根據(jù)概率公式求解;

2)利用樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù);

3)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到在函數(shù)y=-x+5的圖象上的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:

(1)小紅摸出標(biāo)有數(shù)3的小球的概率是

(2)列表或樹(shù)狀圖略

由列表或畫(huà)樹(shù)狀圖可知,P點(diǎn)的坐標(biāo)可能是(1,2)(1,3)(1,4)(2,1)(2,3),

(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12種情況,

(3)共有12種可能的結(jié)果,其中在函數(shù)y=x+5的圖象上的有4種,即(1,4)(2,3)(3,2)(4,1)

所以點(diǎn)P(x,y)在函數(shù)y=x+5圖象上的概率==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,交AC于點(diǎn)C,使BED=C.

(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)若AC=8,cosBED=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,…都在y軸上,對(duì)應(yīng)的縱坐標(biāo)分別為1,2,3,….直線l1,l2l3,…分別經(jīng)過(guò)點(diǎn)A1,A2A3,…,且都平行于x軸.以點(diǎn)O為圓心,半徑為2的圓與直線l1在第一象限交于點(diǎn)B1,以點(diǎn)O為圓心,半徑為3的圓與直線l2在第一象限交于點(diǎn)B2,…,依此規(guī)律得到一系列點(diǎn)Bnn為正整數(shù)),則點(diǎn)B1的坐標(biāo)為_____,點(diǎn)Bn的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,∠C=90°,以點(diǎn)B為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交AB、BC于點(diǎn)M、N分別以點(diǎn)M、N為圓心,以大于MN的長(zhǎng)度為半徑畫(huà)弧兩弧相交于點(diǎn)P過(guò)點(diǎn)P作線段BD,AC于點(diǎn)D,過(guò)點(diǎn)DDE⊥AB于點(diǎn)E,則下列結(jié)論①CD=ED;②∠ABD=∠ABC;③BC=BE④AE=BE中,一定正確的是(

A. B. ① ② ④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸、y軸分別交于點(diǎn)A、點(diǎn)B,直線CDx軸、y軸分別交于點(diǎn)C、點(diǎn)D,ABCD相交于點(diǎn)E,線段OA、OC的長(zhǎng)是一元二次方程x2﹣18x+72=0的兩根(OA>OC),BE=5,OB=OA.

(1)求點(diǎn)A、點(diǎn)C的坐標(biāo);

(2)求直線CD的解析式;

(3)x軸上是否存在點(diǎn)P,使點(diǎn)C、點(diǎn)E、點(diǎn)P為頂點(diǎn)的三角形與△DCO相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知鈍角三角形ABC,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)110°得到△ABC′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2

(1)畫(huà)出△A1B1C1和△A2B2C2;

(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)分別為A1、A2,請(qǐng)寫(xiě)出點(diǎn)A1、A2的坐標(biāo);

(3)Pa,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1,P2,請(qǐng)寫(xiě)出點(diǎn)P1、P2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:

定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2

(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.求y=-2x2+5x-3函數(shù)的“旋轉(zhuǎn)函數(shù)”.

小明是這樣思考的:由y=-2x2+5x-3函數(shù)可知,a1=-2,b1=5,c1=-3,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.

請(qǐng)參考小明的方法解決下面的問(wèn)題:

(1)寫(xiě)出函數(shù)y=-2x2+5x-3的“旋轉(zhuǎn)函數(shù)”;

(2)若函數(shù)y1=x2 x-n與y2=-x2-mx-2互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2019的值;

(3)已知函數(shù)y=(x-2)(x+3)的圖像與軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1、B1、C1,試證明經(jīng)過(guò)點(diǎn)A1、B1、C1的二次函數(shù)與函數(shù)y= (x-2)(x+3)互為“旋轉(zhuǎn)函數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知P是⊙O上一點(diǎn),過(guò)點(diǎn)P作不過(guò)圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動(dòng)點(diǎn)A、B(不與P,Q重合),連接AP、BP. 若∠APQ=BPQ.

(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑;

(2)如圖2,選接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM(不與P、M重合),連接ON、OP,若∠NOP+2OPN=90°,探究直線ABON的位置關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案