【題目】圖①,圖②,圖③都是4×4的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.在圖①,圖②中已畫出線段AB,在圖③中已畫出點A.按下列要求畫圖:
(1)在圖①中,以格點為頂點,AB為一邊畫一個等腰三角形;
(2)在圖②中,以格點為頂點,AB為一邊畫一個正方形;
(3)在圖③中,以點A為一個頂點,另外三個頂點也在格點上,畫一個面積最大的正方形.
【答案】(1)作圖見試題解析;(2)作圖見試題解析;(3)作圖見試題解析.
【解析】
試題分析:(1)根據(jù)勾股定理,結(jié)合網(wǎng)格結(jié)構(gòu),作出兩邊分別為的等腰三角形即可;
(2)根據(jù)勾股定理逆定理,結(jié)合網(wǎng)格結(jié)構(gòu),作出邊長為的正方形;
(3)根據(jù)勾股定理逆定理,結(jié)合網(wǎng)格結(jié)構(gòu),作出最長的線段作為正方形的邊長即可.
試題解析:(1)如圖①,符合條件的C點有5個:
;
(2)如圖②,正方形ABCD即為滿足條件的圖形:
;
(3)如圖③,邊長為的正方形ABCD的面積最大.
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算正確的( )
A.(﹣a)(﹣a)4=﹣a5
B.(a﹣b)2=a2﹣b2
C.(a3)2=a5
D.a3+a3=2a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌的共享自行車企業(yè)為了解工作日期間地鐵站附近的自行車使用情況,做到精確投放,于星期二當(dāng)天對荔灣區(qū)A、B、C三個地鐵站該品牌自行車后使用量進行了統(tǒng)計,繪制如圖1和圖2所示的統(tǒng)計圖,根據(jù)圖中信息解答下列問題:
(1)該品牌自行車當(dāng)天在該三個地鐵站區(qū)域投放了自行車輛.
(2)請補全圖1中的條形統(tǒng)計圖;求出地鐵A站在圖2中所對應(yīng)的圓心角的度數(shù).
(3)按統(tǒng)計情況,若該品牌車計劃在這些區(qū)域再投放1200輛,估計在地鐵B站應(yīng)投入多少輛.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,已知拋物線的頂點為D,與x軸交于A、B兩點,與y軸交于C點,E為對稱軸上的一點,連接CE,將線段CE繞點E按逆時針方向旋轉(zhuǎn)90°后,點C的對應(yīng)點C′恰好落在y軸上.
(1)直接寫出D點和E點的坐標(biāo);
(2)點F為直線C′E與已知拋物線的一個交點,點H是拋物線上C與F之間的一個動點,若過點H作直線HG與y軸平行,且與直線C′E交于點G,設(shè)點H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時,=5:6?
(3)圖2所示的拋物線是由向右平移1個單位后得到的,點T(5,y)在拋物線上,點P是拋物線上O與T之間的任意一點,在線段OT上是否存在一點Q,使△PQT是等腰直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點A,頂點為B.
(1)用含a的式子表示點B的坐標(biāo);
(2)經(jīng)過點C(0,﹣2)的直線AC與OB(O為原點)相交于點D,與拋物線的對稱軸相交于點E,△OCD≌△BED,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中的錯誤的是( ).
A、一組鄰邊相等的矩形是正方形
B、一組鄰邊相等的平行四邊形是菱形
C、一組對邊相等且有一個角是直角的四邊形是矩形
D、一組對邊平行且相等的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAD,交BF于點C,BD平分∠ABC,交AE于點D,連接CD.
(1)若AB=1,則BC的長=;
(2)求證:四邊形ABCD是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com