【題目】如圖,已知點(diǎn)O在直線AB上,將一副直角三角板的直角頂點(diǎn)放在點(diǎn)O處,其中∠OCD=60°,∠OEF=45°.邊OCOE在直線AB上.

1)如圖(1),若CDEF相交于點(diǎn)G,則∠DGF的度數(shù)是______°;

2)將圖(1)中的三角板OCD繞點(diǎn)O順時針旋轉(zhuǎn)30°至圖(2)位置

①若將三角板OEF繞點(diǎn)O順時針旋轉(zhuǎn)180°,在此過程中,當(dāng)∠COE=EOD=DOF時,求∠AOE的度數(shù);

②若將三角板OEF繞點(diǎn)O以每秒的速度順時針旋轉(zhuǎn)180°,與此同時,將三角板OCD繞點(diǎn)O以每秒的速度順時針旋轉(zhuǎn),當(dāng)三角板OEF旋轉(zhuǎn)到終點(diǎn)位置時,三角板OCD也停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時間為t秒,當(dāng)ODEF時,求t的值.

【答案】115;(2)①當(dāng)∠COE=EOD=DOF時,∠AOE=75°;②當(dāng)ODEF時,t的值為25

【解析】

1)根據(jù)三角形外角的性質(zhì)即可得到結(jié)論;
2)①如圖2,根據(jù)已知條件求出∠COE=EOD=45°,得到∠AOE=AOC+COE=30°+45°=75°,當(dāng)∠COE=EOD=DOF時,求得結(jié)論;②根據(jù)垂直的定義得到ODEF,得到∠OHE=90,列方程求得結(jié)論.

1)∵∠EFO=45°,∠D=30°

∴∠DGF=EFO-D=45°-30°=15°,

故答案為:15

2)①如圖2,

∵∠COE=EOD=DOF,∠COE+EOD=COD,∠COD=90°,

∴∠COE=EOD=45°

∴∠AOE=AOC+COE=30°+45°=75°,

當(dāng)∠COE=EOD=DOF時,∠AOE=75°;

②∵∠AOE=4t°,∠AOC=30°+t°,如圖3,

ODEF

∴∠OHE=90,

∵∠E=45°,∠COD=90°

∴∠COE=45°,

∴∠AOE-AOC=COE=45°

4t-30+t=45

t=25,

∴當(dāng)ODEF時,t的值為25

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 (1)如圖1,已知ABCD,ABC=60°,可得BCD=_______°;

如圖2,在的條件下,如果CM平分BCD,則BCM=_________°;

如圖3,在的條件下,如果CNCM,則BCN=___________°

(2)、嘗試解決下面問題:已知如圖4,ABCD,B=40°,CNBCE的平分線, CNCM,求BCM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BACBC于點(diǎn)D,DEAB于點(diǎn)E,則以下結(jié)論:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④BDE周長是4cm.其中正確的有(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接ENAM、CM.設(shè)點(diǎn)N的坐標(biāo)為(mn).

1)若建立平面直角坐標(biāo)系,滿足原點(diǎn)在線段BD上,點(diǎn)B(﹣1,0),A0,1).且BMt0t2),則點(diǎn)D的坐標(biāo)為  ,點(diǎn)C的坐標(biāo)為  ;請直接寫出點(diǎn)N縱坐標(biāo)n的取值范圍是  ;

2)若正方形的邊長為2,求EC的長,以及AM+BM+CM的最小值.(提示:連結(jié)MN,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,∠BAD=BCD=90°,連接AC.AC=8,則四邊形ABCD的面積為(  )

A.32B.24C.40D.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)(﹣20)+(+3)﹣(﹣5)

(2)(﹣5)×6×÷(﹣2)

(3)﹣÷×(﹣9)

(4)(﹣1)4+5÷(﹣)×(﹣6)

(5)(+)×36

(6)﹣1﹣[1+(﹣12)÷6]×(﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB:BC=3:4,∠BAC,∠ACB的平分線相交于點(diǎn)E,過點(diǎn)EEF∥BCAC于點(diǎn)F,則SEFC:SABC=______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點(diǎn)A20)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動,物體甲按逆時針方向以1個單位/秒勻速運(yùn)動,物體乙按順時針方向以2個單位/秒勻速運(yùn)動,則兩個物體運(yùn)動后的第2018次相遇地點(diǎn)的坐標(biāo)是(  )

A. 1,﹣1 B. 2,0 C. (﹣1,1 D. (﹣1,﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與直線交于點(diǎn), 直線軸交于點(diǎn)

1)求直線的函數(shù)表達(dá)式;

2)在線段上找一點(diǎn),使得的面積相等,求出點(diǎn)的坐標(biāo);

3y軸上有一動點(diǎn),直線上有一動點(diǎn),若是以線段為斜邊的等腰直角三角形,求出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案