【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD,BC的延長線相交于點(diǎn)E.

(1)求證:AD是半圓O的切線;

(2)連結(jié)CD,求證:∠A=2∠CDE;

(3)若∠CDE=27°,OB=2,求的長.

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】

試題分析:(1)連接OD,BD,根據(jù)圓周角定理得到∠ABO=90°,根據(jù)等腰三角形的性質(zhì)得到∠ABD=∠ADB,∠DBO=∠BDO,根據(jù)等式的性質(zhì)得到∠ADO=∠ABO=90°,根據(jù)切線的判定定理即可得到即可;

(2)由AD是半圓O的切線得到∠ODE=90°,于是得到∠ODC+∠CDE=90°,根據(jù)圓周角定理得到∠ODC+∠BDO=90°,等量代換得到∠DOC=2∠BDO,∠DOC=2∠CDE即可得到結(jié)論;

(3)根據(jù)已知條件得到∠DOC=2∠CDE=54°,根據(jù)平角的定義得到∠BOD=180°﹣54°=126°,然后由弧長的公式即可計(jì)算出結(jié)果.

試題解析:(1)證明:連接OD,BD,∵AB是⊙O的直徑,∴AB⊥BC,即∠ABO=90°,∵AB=AD,∴∠ABD=∠ADB,∵OB=OD,∴∠DBO=∠BDO,∴∠ABD+∠DBO=∠ADB+∠BDO,∴∠ADO=∠ABO=90°,∴AD是半圓O的切線;

(2)證明:由(1)知,∠ADO=∠ABO=90°,∴∠A=360°﹣∠ADO﹣∠ABO﹣∠BOD=180°﹣∠BOD,∵AD是半圓O的切線,∴∠ODE=90°,∴∠ODC+∠CDE=90°,∵BC是⊙O的直徑,∴∠ODC+∠BDO=90°,∴∠BDO=∠CDE,∵∠BDO=∠OBD,∴∠DOC=2∠BDO,∴∠DOC=2∠CDE,∴∠A=∠CDE;

(3)解:∵∠CDE=27°,∴∠DOC=2∠CDE=54°,∴∠BOD=180°﹣54°=126°,∵OB=2,∴的長==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:(1)(2)
(1)計(jì)算: ﹣(﹣2)+(﹣1)0﹣( 1+
(2)比較 與0.5的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a,b在數(shù)軸上的對應(yīng)點(diǎn)的位置如圖所示,則下列式子中正確的是( )

①b<0<a;②|b|<|a|;③ab>0;④a-b>a+b。
A.①②
B.①④
C.②③
D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在射線OA上,CE平分∠ACD. OF平分∠COB并與射線CD交于點(diǎn)F。

(1)依題意補(bǔ)全圖形;
(2)若∠COB+∠OCD=180°,求證:∠ACE=∠COF。
請將下面的證明過程補(bǔ)充完整。
證明:∵CE平分∠ACD,OF平分∠COB,
∴∠ACE= , ∠COF= ∠COB。
(理由:
∵點(diǎn)C在射線OA上,
∴∠ACD+∠OCD=180°。
∵∠COB+∠OCD=180°,
∴∠ACD=∠
(理由:
∴∠ACE=∠COF。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,O是ABC的外接圓,AB是O的直徑,AB=8.

(1)利用尺規(guī),作CAB的平分線,交O于點(diǎn)D;(保留作圖痕跡,不寫作法)

(2)在(1)的條件下,連接CD,OD,若AC=CD,求B的度數(shù);

(3)在(2)的條件下,OD交BC于點(diǎn)E.求出由線段ED,BE,所圍成區(qū)域的面積.(其中表示劣弧,結(jié)果保留π和根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】mn,則下列各式中一定成立的是( )

A.m2n3B.m5n5C.2m>﹣2nD.3m4n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將n個(gè)邊長都為1cm的正方形按如圖所示的方法擺放,點(diǎn)A1 , A2 , …,An分別是正方形對角線的交點(diǎn),則n個(gè)正方形重疊形成的重疊部分的面積和為( )

A.cm2
B.cm2
C.cm2
D.( ncm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所示是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(5,0),對稱軸為直線x=1,下列結(jié)論中錯(cuò)誤的是(

A.a(chǎn)bc0

B.當(dāng)x1時(shí),y隨x的增大而增大

C.a(chǎn)+b+c0

D.方程ax2+bx+c=0的根為x1=﹣3,x2=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】手工課上,老師要求同學(xué)們將邊長為4cm的正方形紙片恰好剪成六個(gè)等腰直角三角形,聰明的你請?jiān)谙铝兴膫(gè)正方形中畫出不同的剪裁線,并直接寫出每種不同分割后得到的最小等腰直角三角形面積(注:不同的分法,面積可以相等)

查看答案和解析>>

同步練習(xí)冊答案