【題目】已知直線l1:y=kx+b 經(jīng)過點A(﹣,0)和點B(2,5)

(1)求直線l1y軸的交點坐標;

(2)若點C(a,a+2)與點D在直線l1上,過點D的直線l2x軸正半軸交于點 E,當AC=CD=CE 時,求DE的長.

【答案】(1)直線l1y軸的交點坐標是(0,1);(2)6.

【解析】

1)由待定系數(shù)法可求得直線l1的解析式,再令x=0可求得其與y軸的交點坐標

2)根據(jù)(1)中的函數(shù)解析式可以求得點C的坐標,再根據(jù)題意,即可求得DE的長

1∵直線l1y=kx+b 經(jīng)過點A(﹣0)和點B2,5),,,y=2x+1x=0,y=2×0+1=1,即直線l1y軸的交點坐標是(0,1);

2)如圖Ca,a+2)代入y=2x+1可得a=1,則點C的坐標為(1,3).

AC=CD=CE

又∵點D在直線AC,∴點E在以線段AD為直徑的圓上,∴∠DEA=90°,過點CCFx軸于點F, CF=yC=3

AC=CE,AF=EF

又∵AC=CD,CF是△DEA的中位線DE=2CF=6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù))與反比例函數(shù)的圖象交于點A(﹣1,2),Bm,﹣1).

(1)求這兩個函數(shù)的表達式;

(2)在x軸上是否存在點Pn,0)(n>0),使ABP為等腰三角形?若存在,求n的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟的發(fā)展,高鐵逐漸成為了主要的交通工具,一般的高鐵G字頭的高速動車組以D字頭的動車組,由大連到北京的G377的平均速度是D31的平均速度的倍,行駛相同的路程千米,G377少用個小時。

1)求D31的平均速度。

2)若以速度與票價的比值定義這兩種列車的性價比,人們出行都喜歡選擇性價比高的方式,現(xiàn)階段D31票價為/張,G377票件為/張,如果你又機會給有關部門提一個合理化建議,使G377得性價比達到D31的性價比,你如何建議,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P(ab),若點P′的坐標為(a+kbka+b)(其中k為常數(shù),且),則稱點P′為點Pk屬派生點”.例如:P(14)屬派生點為P′(1+2×4,2×1+4),即P′(96).

(1)P(-2,3)“2屬派生點”P′的坐標為__________.

(2) 若點P“3屬派生點”P′的坐標為(62),求點P的坐標;

(3) 若點Px軸的正半軸上,點P“k屬派生點P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊ABy軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A在第二象限,⊙A分別與x軸、y軸相切.若將⊙A向右平移5個單位,圓心A恰好落在直線y=2x﹣4上,則⊙A的半徑為( 。

A. B. 2 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A為線段BC外一動點,且BC4AB3,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CDBE

1)請找出圖中與BE相等的線段,并說明理由;

2)當∠ABC30°時,求線段BE長;

3)直接寫出線段BE長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀理解:

如圖①,在ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到EBD),把AB,AC2AD集中在ABE中,利用三角形三邊的關系即可判斷.中線AD的取值范圍是___________;

(2)問題解決: 如圖②,在ABC,DBC邊上的中點,DEDF于點D,DEAB于點E,DFAC于點F,連接EF,求證:BE+CFEF;

(3)問題拓展:如圖③,在四邊形ABCD,B+D=180°,CB=CD,C為頂點作∠ECF,使得角的兩邊分別交AB,ADEF兩點,連接EF,EF=BE+DF,試探索∠ECF與∠A之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.

(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關系是

(2)如圖2,當點E在DC邊上且不是DC的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;

(3)如圖3,當點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.

查看答案和解析>>

同步練習冊答案