【題目】在直角坐標(biāo)系中,(為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn)中點(diǎn),連接(繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到,記旋轉(zhuǎn)角為,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,連接中點(diǎn),連接

1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);

2)如圖②,當(dāng)時(shí),求證,且;

3)當(dāng)旋轉(zhuǎn)至點(diǎn)共線(xiàn)時(shí),求點(diǎn)的坐標(biāo)(直接寫(xiě)出結(jié)果即可)

【答案】1)點(diǎn);(2)見(jiàn)解析;(3)點(diǎn)

【解析】

1)過(guò)點(diǎn),垂足為,由旋轉(zhuǎn)圖形性質(zhì),得到AM的長(zhǎng),再應(yīng)用解直角三角形的知識(shí)問(wèn)題可解;

2)根據(jù)直角三角形斜邊上中線(xiàn)等于斜邊一半可證OP=PN,再由三角形內(nèi)角和知識(shí),證明即可;

3)根據(jù)題意畫(huà)出滿(mǎn)足條件圖形,過(guò)M于點(diǎn)E,利用銳角三角函數(shù)和旋轉(zhuǎn)的知識(shí),求出,則問(wèn)題可解.

1)如圖點(diǎn),點(diǎn)

中點(diǎn)

,

為等腰直角三角形

當(dāng)時(shí),

點(diǎn)落在上,

由旋轉(zhuǎn)可知

過(guò)點(diǎn),垂足為

點(diǎn)

如圖,當(dāng)時(shí),

點(diǎn)共線(xiàn),點(diǎn)共線(xiàn)

,

中點(diǎn),

,

可得

當(dāng)點(diǎn)BM、N共線(xiàn),M位于B、N之間時(shí),如圖

過(guò)M于點(diǎn)E

由已知,,

中,

中,

則點(diǎn)M坐標(biāo)為

當(dāng)點(diǎn)BM、N共線(xiàn),N位于B、M之間時(shí),如圖

過(guò)M于點(diǎn)E

由已知,,

中,

中,

則點(diǎn)M坐標(biāo)為

綜上,點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了清洗水箱,需先放掉水箱內(nèi)原有的存水,如圖是水箱剩余水量y(升)隨放水時(shí)間x(分)變化的圖象.

1)求y關(guān)于x的函數(shù)表達(dá)式,并確定自變量x的取值范圍;

2)若800打開(kāi)放水龍頭,估計(jì)855910(包括855910)水箱內(nèi)的剩水量(即y的取值范圍);

3)當(dāng)水箱中存水少于10升時(shí),放水時(shí)間至少超過(guò)多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AD與圓相切,請(qǐng)?jiān)谙聢D中,僅用無(wú)刻度的直尺按要求畫(huà)圖.

1)若BC是圓的直徑,畫(huà)出平行四邊形ABCD的邊CD上的高;

2)若CD與圓相切,畫(huà)出平行四邊形ABCD的邊BC上的高AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,折疊矩形的一邊,使點(diǎn)落在邊的點(diǎn)處,折痕為,連接.已知點(diǎn)的坐標(biāo)為,二次函數(shù)圖象經(jīng)過(guò)、三點(diǎn).

1)求函數(shù)解析式;

2)在軸下方拋物線(xiàn)上有一動(dòng)點(diǎn),過(guò)點(diǎn)軸,交軸于點(diǎn),連接,當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).

3)在拋物線(xiàn)對(duì)稱(chēng)軸上是否存在一點(diǎn),使有最大值?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平行四邊形內(nèi)有兩個(gè)全等的正六邊形,若陰影部分的面積記為,平行四邊形的面積記為,的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)號(hào)召全校學(xué)生進(jìn)行安全教育網(wǎng)絡(luò)學(xué)習(xí),并對(duì)部分學(xué)生的學(xué)習(xí)情況進(jìn)行了隨機(jī)調(diào)查.對(duì)部分學(xué)生的成績(jī)(x為整數(shù),滿(mǎn)分100分)進(jìn)行統(tǒng)計(jì),并繪制了如下統(tǒng)計(jì)圖表.

調(diào)查結(jié)果頻數(shù)分布表

組別

分?jǐn)?shù)段

頻數(shù)

A

a

B

96

C

126

D

126

E

180

合計(jì)

b

調(diào)查結(jié)果扇形統(tǒng)計(jì)圖

根據(jù)所給信息,解答下列問(wèn)題:

1)填空:_________,_________;

2)求扇形統(tǒng)計(jì)圖中,m的值及A組對(duì)應(yīng)的圓心角的度數(shù);

3)若參加學(xué)習(xí)的同學(xué)共有1500人,請(qǐng)你估計(jì)成績(jī)不低于80分的同學(xué)有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量一個(gè)鐵球的直徑,將該鐵球放入工件槽內(nèi),測(cè)得的有關(guān)數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為(

A.12 cmB.10 cmC.8 cmD.6 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)探究:

問(wèn)題:如圖1,等邊三角形ABC的邊長(zhǎng)為6,點(diǎn)O是∠ABC和∠ACB的角平分線(xiàn)交點(diǎn),∠FOG120°,繞點(diǎn)O任意旋轉(zhuǎn)∠FOG,分別交ABC的兩邊于D,E兩點(diǎn)求四邊形ODBE的面積.

討論:

①甲:在∠FOG旋轉(zhuǎn)過(guò)程中,當(dāng)OF經(jīng)過(guò)點(diǎn)B時(shí),OG一定經(jīng)過(guò)點(diǎn)C

②乙:小明的分析有道理,這樣,我們就可以利用“ASA”證出ODB≌△OEC

③丙:因?yàn)?/span>ODB≌△OEC,所以只要算出OBC的面積就得出了四邊形ODBE的面積.

老師:同學(xué)們的思路很清晰,也很正確,在分析和解決問(wèn)題時(shí),我們經(jīng)常會(huì)借用特例作輔助線(xiàn)來(lái)解決一般問(wèn)題請(qǐng)你按照探究的思路,直接寫(xiě)出四邊形ODBE的面積:________

2)應(yīng)用:

①特例:如圖2,∠FOG的頂點(diǎn)O在等邊三角形ABC的邊BC上,OB2,OC4,邊OGAC于點(diǎn)E,OFAB于點(diǎn)D,求BOD面積.

②探究:如圖3,已知∠FOG60°,頂點(diǎn)O在等邊三角形ABC的邊BC上,OB2,OC4,記BOD的面積為x,COE的面積為y,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

同步練習(xí)冊(cè)答案