【題目】菱形具有而平行四邊形不具有的性質(zhì)是( 。

A.對角線互相垂直B.對邊平行

C.對邊相等D.對角線互相平分

【答案】A

【解析】

根據(jù)菱形及平行四邊形的性質(zhì),結(jié)合選項即可得出答案.

A、對角線互相垂直是菱形具有,平行四邊形不具有的性質(zhì),故本選項正確;

B、對邊平行是菱形和平行四邊形都具有的性質(zhì),故本選項錯誤;

C、對邊相等是菱形和平行四邊形都具有的性質(zhì),故本選項錯誤;

D、對角線互相平分是菱形和平行四邊形都具有的性質(zhì),故本選項錯誤.

故選A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應點A的坐標是( )

A.(1,2) B.(9,18)

C.(9,18)或(9,18) D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點,BCx軸,交y軸于點C,動點P從坐標原點O出發(fā),沿OABC(圖中“→”所示路線)勻速運動,終點為C,過P作PMx軸,垂足為M.設(shè)三角形OMP的面積為S,P點運動時間為t,則S關(guān)于x的函數(shù)圖象大致為(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,ACB=90°,AC=6cm,BC=8cm,動點P從點C出發(fā),C→B→A的路徑,以2cm每秒的速度運動,設(shè)運動時間為t.

(1) t=1時,求△ACP的面積

(2) t為何值時,線段AP是∠CAB的平分線?

(3) 請利用備用圖2繼續(xù)探索:當t為何值時,△ACP是以AC為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD,AD∥BC,將長方形紙片折疊,使點D與點B重合,點C落在點C'處,折痕為EF,

(1)求證:BEBF

(2)∠ABE18°,求∠BFE的度數(shù).

(3)AB6,AD8,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,則∠3=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關(guān)于圖形平移的說法中,錯誤的是( )
A.圖形上所有點移動的方向都相同
B.圖形上所有點移動的距離都相等
C.圖形上可能存在不動點
D.對應點所連的線段相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】測量計算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點處觀測旗桿頂點A的仰角為50°,觀測旗桿底部B點的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班數(shù)學興趣小組利用數(shù)學活動課時間測量位于烈山山頂?shù)难椎鄣裣窀叨,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進1620尺到達E點,在點E處測得雕像頂端A的仰角為60°,求雕像AB的高度.

查看答案和解析>>

同步練習冊答案