如圖1,在正方形ABCD中,點(diǎn)E、F分別為邊BC、CD的中點(diǎn),AF、DE相交于點(diǎn)G,則可得結(jié)論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點(diǎn)E、F不是正方形ABCD的邊BC、CD的中點(diǎn),但滿足CE=DF,則上面的結(jié)論①、②是否仍然成立;(請(qǐng)直接回答“成立”或“不成立”)
(2)如圖③,若點(diǎn)E、F分別在正方形ABCD的邊CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí)上面的結(jié)論①、②是否仍然成立?若成立,請(qǐng)寫(xiě)出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.
(3)如圖④,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M、N、P、Q分別為AE、EF、FD、AD的中點(diǎn),請(qǐng)先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫(xiě)出證明過(guò)程.
精英家教網(wǎng)
分析:(1)根據(jù)正方形的性質(zhì)證明△DEC≌△AFD即可知道結(jié)論成立.
(2)由已知得四邊形ABCD為正方形,證明Rt△ADF≌Rt△ECD,然后推出∠ADE+∠DAF=90°;進(jìn)而得出AF⊥DE;
(3)首先根據(jù)題意證明四邊形MNPQ是菱形,然后又因?yàn)锳F⊥DE,得出四邊形MNPQ為正方形.
解答:解:(1)∵DF=CE,AD=DC,且∠ADF=∠DCE,
∴△DEC≌△AFD;
∴結(jié)論①、②成立(1分)

(2)結(jié)論①、②仍然成立.理由為:
∵四邊形ABCD為正方形,
∴AD=DC=CB且∠ADC=∠DCB=90°,
在Rt△ADF和Rt△ECD中
AD=DC
∠ADC=∠DCB
CE=DF
,
∴Rt△ADF≌Rt△ECD(SAS),(3分)
∴AF=DE,
∴∠DAF=∠CDE,
∵∠ADE+∠CDE=90°,
∴∠ADE+∠DAF=90°,
∴∠AGD=90°,
∴AF⊥DE;(5分)

(3)結(jié)論:四邊形MNPQ是正方形(6分)
證明:∵AM=ME,AQ=QD,
∴MQ∥DE且MQ=
1
2
DE,
同理可證:PN∥DE,PN=
1
2
DE;MN∥AF,MN=
1
2
AF;PQ∥AF,PQ=
1
2
AF;
∵AF=DE,
∴MN=NP=PQ=QM,
∴四邊形MNPQ是菱形,(8分)
又∵AF⊥DE,
∴∠MQP=90°,
∴四邊形MNPQ是正方形.(10分)
點(diǎn)評(píng):本題考查的是全等三角形的判定,正方形的判定以及正方形的性質(zhì),難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、把正方形OFGE紙板按如圖①方式放置在正方形紙板ABCD上,頂點(diǎn)G在對(duì)角線AC,并把正方形OFGE繞頂點(diǎn)A沿逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為а.
(1)如圖②,當(dāng)а=90°時(shí),請(qǐng)直接寫(xiě)出線段DE與BF的數(shù)量關(guān)系和位置關(guān)系;
(2)如圖③,當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明.若發(fā)生改變,請(qǐng)舉例說(shuō)明;
(3)如圖④,將圖①、圖③中的兩個(gè)正方形都改為矩形,其他條件不變,設(shè)AB=kAD(k>0),當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明.若發(fā)生改變,請(qǐng)寫(xiě)出改變后的新結(jié)論,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)填空:如圖1,在正方形PQRS中,已知點(diǎn)M、N分別在邊QR、RS上,且QM=RN,連接PN、SM相交于點(diǎn)O,則∠POM=
 
度;
(2)如圖2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此為部分條件,精英家教網(wǎng)構(gòu)造一個(gè)與上述命題類(lèi)似的正確命題并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖1,在正方形ABCD中,若點(diǎn)E是△DBC內(nèi)的一點(diǎn),且DE=DC,BE=CE.
(1)連接AE.說(shuō)明△ABE≌△DCE的理由;
(2)求∠BDE與∠CDE度數(shù)的比值;
(3)拓展探索:若只將題中的條件“正方形ABCD”換成條件“梯形ABCD中,AD∥BC,AB=DC,2∠DBC=∠DCB”.如圖2,研究∠BDE與∠CDE度數(shù)的比值是否與(2)中的結(jié)論相同,寫(xiě)出你的研究結(jié)果并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1,在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)E,AF平分∠BAC,交BD于點(diǎn)F.
(1)求證:EF+
1
2
AC=AB;
(2)點(diǎn)C1從點(diǎn)C出發(fā),沿著線段CB向點(diǎn)B運(yùn)動(dòng)(不與點(diǎn)B重合),同時(shí)點(diǎn)A1從點(diǎn)A出發(fā),沿著B(niǎo)A的延長(zhǎng)線運(yùn)動(dòng),點(diǎn)C1與A1的運(yùn)動(dòng)速度相同,當(dāng)動(dòng)點(diǎn)C1停止運(yùn)動(dòng)時(shí),另一動(dòng)點(diǎn)A1也隨之停止運(yùn)動(dòng).如圖2,A1F1平分∠BA1C1,交BD于點(diǎn)F1,過(guò)點(diǎn)F1作F1E1⊥A1C1,垂足為E1,請(qǐng)猜想E1F1,
1
2
A1C1與AB三者之間的數(shù)量關(guān)系,并證明你的猜想;
(3)在(2)的條件下,當(dāng)A1E1=3,C1E1=2時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

課本練習(xí)拓展:
(1)如圖1,在正方形ABCD中,E是BC上的一點(diǎn),△ABE經(jīng)過(guò)旋轉(zhuǎn)后得到△ADF,
①旋轉(zhuǎn)中心是點(diǎn)
A
A
;旋轉(zhuǎn)角度最少是
90
90
度.
②愛(ài)動(dòng)腦筋的小兵,在CD邊上取點(diǎn)H使得∠HAE=45°,他發(fā)現(xiàn):HE=BE+HD,他的發(fā)現(xiàn)正確嗎?請(qǐng)你判斷并說(shuō)明理由.
(2)思維闖關(guān):
如圖2,在直角梯形ABCD中AD∥BC(BC>AD),∠B=90°BC=AB=6,E是 AB上一點(diǎn),且∠DCE=45°,BE=2,則DE的長(zhǎng)=
5
5
.(小兵運(yùn)用解答(1)中所積累的經(jīng)驗(yàn)和知識(shí)做出了該題)
(3)動(dòng)手闖過(guò):
①小明有一塊如圖3所示的紙片,其中∠A=∠C=90°,AB=AD.小明請(qǐng)小兵只剪一刀后把它拼成正方形,請(qǐng)你幫助小兵在圖中畫(huà)出剪拼得示意圖.
②小兵好朋友小紅現(xiàn)有兩塊同小明一樣的紙片,如圖4,小兵能否在每塊上各剪一刀,然后拼成一個(gè)大的正方形?若能,請(qǐng)你畫(huà)出剪法和拼法的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案