如圖1,在正方形ABCD中,對(duì)角線(xiàn)AC與BD相交于點(diǎn)E,AF平分∠BAC,交BD于點(diǎn)F.
(1)求證:EF+
AC=AB;
(2)點(diǎn)C
1從點(diǎn)C出發(fā),沿著線(xiàn)段CB向點(diǎn)B運(yùn)動(dòng)(不與點(diǎn)B重合),同時(shí)點(diǎn)A
1從點(diǎn)A出發(fā),沿著B(niǎo)A的延長(zhǎng)線(xiàn)運(yùn)動(dòng),點(diǎn)C
1與A
1的運(yùn)動(dòng)速度相同,當(dāng)動(dòng)點(diǎn)C
1停止運(yùn)動(dòng)時(shí),另一動(dòng)點(diǎn)A
1也隨之停止運(yùn)動(dòng).如圖2,A
1F
1平分∠BA
1C
1,交BD于點(diǎn)F
1,過(guò)點(diǎn)F
1作F
1E
1⊥A
1C
1,垂足為E
1,請(qǐng)猜想E
1F
1,
A
1C
1與AB三者之間的數(shù)量關(guān)系,并證明你的猜想;
(3)在(2)的條件下,當(dāng)A
1E
1=3,C
1E
1=2時(shí),求BD的長(zhǎng).