【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,點(diǎn)C、E是⊙O上的兩點(diǎn),CE=CB,,延長AE交BC的延長線于點(diǎn)F.

(1)求證:CD是⊙O的切線;

(2)求證:CE=CF

(3)若BD=1,,求直徑AB的長.

【答案】(1)見解析;(2)見解析;(3)1

【解析】

1)連接OC,可證得∠CAD=∠BCD,由∠CAD+∠ABC90°,可得出∠OCD90°,即結(jié)論得證;

2)證明△ABC≌△AFC可得CBCF,又CBCE,則CECF;

3)證明△DCB∽△DAC,可求出DA的長,再求出AB長即可.

1)連接OC

AB是⊙O的直徑,

∴∠ACB90°,

∴∠CAD+∠ABC90°,

CECB,

∴∠CAE=∠CAB,

∵∠BCD=∠CAE,

∴∠CAB=∠BCD,

OBOC

∴∠OBC=∠OCB,

∴∠OCB+∠BCD90°,

∴∠OCD90°,

CD是⊙O的切線;

2)∵∠BAC=∠CAE,∠ACB=∠ACF90°,ACAC

∴△ABC≌△AFCASA),

CBCF,

又∵CBCE,

CECF;

3)∵∠BCD=∠CAD,∠ADC=∠CDB

∴△DCB∽△DAC,

,

DA2,

ABADBD211

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)y=ax-1)(x-a),其中a是常數(shù),且a0

1)當(dāng)a=2時(shí),試判斷點(diǎn)(-,-5)是否在該函數(shù)圖象上.

2)若函數(shù)的圖象經(jīng)過點(diǎn)(1,-4),求該函數(shù)的表達(dá)式.

3)當(dāng)-1≤x+1時(shí),yx的增大而減小,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點(diǎn)C作AC的垂線交AD的延長線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.

1求∠CDE的度數(shù);

2求證:DF是⊙O的切線;

3若AC=2DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,是邊上的一動點(diǎn)(不與點(diǎn)、重合),連接,點(diǎn)關(guān)于直線的對稱點(diǎn)為,連接并延長交于點(diǎn),連接,過點(diǎn)的延長線于點(diǎn),連接

1)求證:;

2)用等式表示線段的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ABAC,AD是角平分線,FBA延長線上的一點(diǎn),AE平分∠FAC,DEBAAEE.求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+2x﹣3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將這條拋物線向右平移mm>0)個(gè)單位長度,平移后的拋物線與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),若B,C是線段AD的三等分點(diǎn),則m的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為紀(jì)念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,BC依次表示這三首歌曲).比賽時(shí),將AB,C這三個(gè)字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機(jī)抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.

1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;

2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,

1)求線段的長;

2)聯(lián)結(jié),交對角線于點(diǎn),求的余切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為4的正方形ABCD中,點(diǎn)EBC邊上的一個(gè)動點(diǎn),連接DE,交AC于點(diǎn)N,過點(diǎn)DDFDE,交BA的延長線于點(diǎn)F,連接EF,交AC于點(diǎn)M

1)判定△DFE的形狀,并說明理由;

2)設(shè)CE=x,△AMF的面積為y,求yx之間的函數(shù)關(guān)系式;并求出當(dāng)x為何值時(shí)y有最大值?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案