【題目】如圖,在△ABD和△ACE中,有下列四個等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三個條件為題設,填入已知欄中,一個論斷為結(jié)論,填入下面求證欄中,使之組成一個真命題,并寫出證明過程.
已知: .
求證: .
證明:
【答案】已知:在△ABD和△ACE中,AB=AC,AD=AE,BD=CE,
求證:∠1=∠2.
【解析】
試題分析:此題無論選擇什么作為題設,什么作為結(jié)論,它有一個相同點﹣﹣都是通過證明△ABD≌△ACE,然后利用全等三角形的性質(zhì)解決問題.
解:解法一:如果AB=AC,AD=AE,BD=CE,那么∠1=∠2.
已知:在△ABD和△ACE中,AB=AC,AD=AE,BD=CE,
求證:∠1=∠2.
證明:∵AB=AC,AD=AE,BD=CE,
∴△ABD≌△ACE,
∴∠BAD=∠CAE,
∴∠1=∠2.
解法二:如果AB=AC,AD=AE,∠1=∠2,那么BD=CE.
已知:在△ABD和△ACE中,AB=AC,AD=AE,∠1=∠2,
求證:BD=CE.
證明:∵∠1=∠2
∴∠BAD=∠CAE,而AB=AC,AD=AE,
∴△ABD≌△ACE
∴BD=CE.
科目:初中數(shù)學 來源: 題型:
【題目】按一定規(guī)律排列的一列數(shù)依次為: -2,4,-8,16,-32 按照此規(guī)律排列下去,
這列數(shù)中第7個數(shù)是________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2-2x+3 的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)設點H是第二象限內(nèi)拋物線上的一點,且△HAB的面積是6,求點H的坐標;
(3)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列四個命題:①垂直于弦的直徑平分弦以及弦所對的兩條弧;②在同圓或等圓中,相等的弦所對的圓周角相等;③三角形有且只有一個外接圓;④矩形一定有一個外接圓;⑤三角形的外心到三角形三邊的距離相等。其中真命題的個數(shù)有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡,再求值:
(1)(-2x2 y)2·(-xy3)-(-x3)3÷x4·y5,其中xy=-1.
(2)(a2+3)(a-2)-a(a2-2a-2),其中a=-2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,如果∠A+∠B+∠C=260°,則∠D的度數(shù)是( )
A.120° B.110° C.100° D.40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某樓盤2014年底房價為每平方米8100元,經(jīng)過兩年連續(xù)降價后,2016年底房價為7600元.設該樓盤這兩年房價平均降低率為x,根據(jù)題意可列方程為 . (不必化簡)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com