【題目】已知二次函數(shù)y=x2﹣2hx+h,當(dāng)自變量x的取值在﹣1≤x≤1的范圍中時(shí),函數(shù)有最小值n,則n的最大值是_____

【答案】

【解析】

根據(jù)二次函數(shù)的性質(zhì)可找出二次函數(shù)圖象的對(duì)稱(chēng)軸,分h≤-1、-1<h<1h≥1三種情況考慮,利用二次函數(shù)的性質(zhì)結(jié)合h的取值范圍即可找出n的取值范圍,取其最大值即可得出結(jié)論.

二次函數(shù)y=x2-2hx+h圖象的對(duì)稱(chēng)軸為直線(xiàn)x=h.
當(dāng)h≤-1時(shí),x=-1時(shí)y取最小值,此時(shí)n=1+2h+h=1+3h≤-2;
當(dāng)-1<h<1時(shí),x=h時(shí)y取最小值,此時(shí)n=h2-2h2+h=-h2+h=-(h-2+;
當(dāng)h≥1時(shí),x=1時(shí)y取最小值,此時(shí)n=1-2h+h=1-h≤0.
綜上所述:n的最大值為
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4,a),B(﹣1,2)是一次函數(shù)y1=kx+b與反比例函數(shù)y2=(m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C.

(1)求出k,bm的值.

(2)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)y1>y2時(shí),x的取值范圍是 ________.

(3)P是線(xiàn)段AB上的一點(diǎn),連接PC,若△PCA的面積等于,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】投資1萬(wàn)元圍一個(gè)矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長(zhǎng)24 m,平行于墻的邊的費(fèi)用為200元/m,垂直于墻的邊的費(fèi)用為150元/m,設(shè)平行于墻的邊長(zhǎng)為x m.

(1)設(shè)垂直于墻的一邊長(zhǎng)為y m,直接寫(xiě)出y與x之間的函數(shù)關(guān)系式;

(2)若菜園面積為384 m2,求x的值;

(3)求菜園的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線(xiàn)AByx4x軸于點(diǎn)A,交y軸于點(diǎn)B.直線(xiàn)CDy=-x1與直線(xiàn)AB相交于點(diǎn)M,交x軸于點(diǎn)C,交y軸于點(diǎn)D

(1)直接寫(xiě)出點(diǎn)B和點(diǎn)D的坐標(biāo).

(2)若點(diǎn)P是射線(xiàn)MD的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)是x,△PBM的面積是S,求Sx之間的函數(shù)關(guān)系,并指出x的取值范圍.

(3)當(dāng)S10時(shí),平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)E,使以點(diǎn)B,E,P,M為頂點(diǎn)的四邊形是平行四邊形?若存在,共有幾個(gè)這樣的點(diǎn)?請(qǐng)求出其中一個(gè)點(diǎn)的坐標(biāo)(寫(xiě)出求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論正確的是(  )

A. ac<0 B. ab>0 C. 4a+b=0 D. a﹣b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),拋物線(xiàn)上另有一點(diǎn)Cx軸下方,且使OCA∽△OBC.

(1)求線(xiàn)段OC的長(zhǎng)度;

(2)設(shè)直線(xiàn)BCy軸交于點(diǎn)M,點(diǎn)CBM的中點(diǎn)時(shí),求直線(xiàn)BM和拋物線(xiàn)的解析式;

(3)在(2)的條件下,直線(xiàn)BC下方拋物線(xiàn)上是否存在一點(diǎn)P,使得四邊形ABPC面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)l1y2x1與直線(xiàn)l2ymx4相交于點(diǎn)P(1,b)

1)求b,m的值;

2)垂直于x軸的直線(xiàn)與直線(xiàn)l1l2,分別交于點(diǎn)C,D,垂足為點(diǎn)E,設(shè)點(diǎn)E的坐標(biāo)為(a,0)若線(xiàn)段CD長(zhǎng)為2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對(duì)角線(xiàn)AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行知識(shí)大賽,校、校各派出名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.

1)根據(jù)圖示填寫(xiě)下表:

平均數(shù)

中位數(shù)

眾數(shù)

校選手成績(jī)

校選手成績(jī)

80

2)結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;

3)計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.

查看答案和解析>>

同步練習(xí)冊(cè)答案