【題目】在平面直角坐標(biāo)系中B(3,2),BC⊥y軸于C,BA⊥x軸于A,點(diǎn)E在線段AB上從B向A以每秒1個(gè)單位的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<2).將BE沿BD折疊,使E點(diǎn)恰好落在BC上的F處.
(1)如圖1,若E為AB的中點(diǎn),請(qǐng)直接寫出F、D兩點(diǎn)的坐標(biāo):F( , ) D( , )
(2)如圖1,連接CD,在(1)的條件下,求證:CD=FD.
(3)如圖2,在E點(diǎn)運(yùn)動(dòng)的同時(shí),M點(diǎn)在OC上從C向O運(yùn)動(dòng),N點(diǎn)在OA上從A向O運(yùn)動(dòng),M的運(yùn)動(dòng)速度為每秒3個(gè)單位,N的運(yùn)動(dòng)速度為每秒a個(gè)單位.在運(yùn)動(dòng)過(guò)程中,△CMF能與△ANE全等嗎?若能,求出此時(shí)a與t的值,若不能,請(qǐng)說(shuō)明理由.
【答案】
(1)2;2;1;0
(2)
解:如圖1,過(guò)點(diǎn)D作DG⊥BC于G,
由折疊得,DE=DF,∠BED=∠BFD,
∴∠AED=DFC,
在△AED和△GFD中 ,
∴△AED≌△GFD,
∴GF=AE=1,
∵CF=2,
∴CG=1,
∴CG=FG,
∵DG⊥CG,
∴CD=FD
(3)
解:能全等,即:△CMF≌△AEN,
理由:
∵M(jìn)點(diǎn)在OC上從C向O運(yùn)動(dòng),N點(diǎn)在OA上從A向O運(yùn)動(dòng),M的運(yùn)動(dòng)速度為每秒3個(gè)單位,N的運(yùn)動(dòng)速度為每秒a個(gè)單位,點(diǎn)E在線段AB上從B向A以每秒1個(gè)單位的速度運(yùn)動(dòng),
∴CM=3t,AN=at,BE=t,
∴AE=2﹣t,
∵將BE沿BD折疊,使E點(diǎn)恰好落在BC上的F處,
∴BF=BE=t,
∴CF=BC﹣BF=3﹣t,
∵BF=BE,BC≠AB,
∴AE=CF,
∵△CMF與△ANE全等
∴△CMF≌△AEN,
∴CM=AE,CF=AN,
∴3t=2﹣t,3﹣t=at,
∴t= ,a=5.
【解析】解:(1)∵四邊形ABCD是矩形,且B(3,2),
∴OA=BC=3,OC=AB=2,
∵E為AB的中點(diǎn),
∴AE=BE=1,
由折疊得,BF=BE=1,
∴CF=2,
∴F(2,2),
如圖1,
過(guò)點(diǎn)D作DG⊥BC于G,
由折疊得,DE=DF,∠BED=∠BFD,
∴∠AED=DFC,
在△AED和△GFD中 ,
∴△AED≌△GFD,
∴AD=DG=OC=2,
∴OD=1,
∴D(1,0),
所以答案是:2,2,1,0;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,EF過(guò)矩形ABCD對(duì)角線的交點(diǎn)O , 且分別交AB、CD于E、F , 那么陰影部分的面積與矩形ABCD面積的大小關(guān)系是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長(zhǎng)線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線.
(2)若BC=2,sin∠BCP=,求點(diǎn)B到AC的距離.
(3)在第(2)的條件下,求△ACP的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中不能判定四邊形是矩形的是( )
A. 四個(gè)角都相等的四邊形 B. 有一個(gè)角為90°的平行四邊形
C. 對(duì)角線相等的平行四邊形 D. 對(duì)角線互相平分的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)(2﹣π)0+( )﹣2+(﹣2)3
(2)0.5200×(﹣2)202
(3)(﹣2x3)2(﹣x2)÷[(﹣x)2]3
(4)(3x﹣1)(x+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校一課外活動(dòng)小組為了解學(xué)生最喜歡的球類運(yùn)動(dòng)情況,隨機(jī)抽查本校九年級(jí)的200名學(xué)生,調(diào)查的結(jié)果如圖所示.請(qǐng)根據(jù)該扇形統(tǒng)計(jì)圖解答以下問(wèn)題:
(1)求圖中的x的值;
(2)求最喜歡乒乓球運(yùn)動(dòng)的學(xué)生人數(shù);
(3)若由3名最喜歡籃球運(yùn)動(dòng)的學(xué)生,1名最喜歡乒乓球運(yùn)動(dòng)的學(xué)生,1名最喜歡足球運(yùn)動(dòng)的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng).欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運(yùn)動(dòng)的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰三角形ABC的底邊長(zhǎng)BC=20cm,D是AC上的一點(diǎn),且BD=16cm,CD=12cm.
(1)求證:BD⊥AC;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A. 3m2﹣2m2=1 B. 5m4﹣2m3=3m C. m2n﹣mn2=0 D. 3m﹣2m=m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,BC=5,CF=3,BF=4.求證:DE∥FC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com