分析 (1)根據(jù)題意作輔助線OC⊥AB于點C,根據(jù)OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度數(shù),從而可以求得AB的長;
(2)由題意可知,作出的圓與(1)中所作圓的大小相等,則AE=AB,然后作出相應(yīng)的輔助線,畫出圖形,從而可以求得BE的長,本題得以解決.
解答 解:(1)作OC⊥AB于點C,如右圖2所示,
由題意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,
∴∠BOC=9°
∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,
即所作圓的半徑約為3.13cm;
(2)作AD⊥OB于點D,作AE=AB,如下圖3所示,
∵保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,
∴折斷的部分為BE,
∵∠AOB=18°,OA=OB,∠ODA=90°,
∴∠OAB=81°,∠OAD=72°,
∴∠BAD=9°,
∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,
即鉛筆芯折斷部分的長度是0.98cm.
點評 本題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,作出合適的輔助線,找出所求問題需要的條件.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 經(jīng)過兩點有且只有一條直線 | |
B. | 三角形的中位線平行且等于第三邊的一半 | |
C. | 平行四邊形的對角線相等 | |
D. | 圓的切線垂直于經(jīng)過切點的半徑 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com