【題目】24如圖,P是弧AB所對弦AB上一動點,過點PPCAB交弧AB于點C,取AP中點D,連接CD.已知AB=6cm,設(shè)A,P兩點間的距離為xcm,CD兩點間的距離為ycm.(當點P與點A重合時,y的值為0;當點P與點B重合時,y的值為3)

小凡根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小凡的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.2

   

3.2

3.4

3.3

3

(2)建立平面直角坐標系,描出補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;

(3)結(jié)合所畫出的函數(shù)圖象,解決問題:當∠C=30°時,AP的長度約為   cm

【答案】(1)2.9;(2)圖像見解析;(3)3.3

【解析】

1)根據(jù)對稱性可知:當x2x4時,PABP′=2,再根據(jù)勾股定理去求解;

2)利用描點法畫出圖象即可;

3)當∠DCP=30°時,CD2PD,即yx,再觀察圖像即可.

解:(1)如圖,根據(jù)對稱性可知:

根據(jù)對稱性可知:當x2x4時,PABP′=2,

PCAB,PC′⊥AB

PCPC′=

CD≈2.9.

故答案為2.9

2)利用描點法畫出圖象如圖所示:

3)當∠DCP=30°時,CD2PD,即yx,

觀察圖象可知:與函數(shù)圖象與直線yx的交點為(3.3,3.3),

AP的長度為3.3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,AD⊥BC,垂足為D,以 AD為直徑作⊙O,⊙O分別交AB、AC于 E、F.

(1)求證:BE=CF;

(2)設(shè) AD、EF相交于G,若 EF=8,⊙O的半徑為5,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P是⊙O外一點,PO交⊙O于點C,OCCP4,弦ABOC,劣弧AB的度數(shù)為120°,連接PB

1)求BC的長;

2)求證:PB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展青少年科技創(chuàng)新比賽活動,“喜洋洋代表隊設(shè)計了一個遙控車沿直線軌道AC做勻速直線運動的模型.甲、乙兩車同時分別從A,B出發(fā),沿軌道到達C,AC,甲的速度是乙的速度的1.5,設(shè)t分后甲、乙兩遙控車與B處的距離分別為d1,d2(單位:),d1,d2t的函數(shù)關(guān)系如圖,試根據(jù)圖象解決下列問題.

(1)填空乙的速度v2=________/;

(2)寫出d1t的函數(shù)表達式;

(3)若甲、乙兩遙控車的距離超過10米時信號不會產(chǎn)生相互干擾,試探究什么時間兩遙控車的信號不會產(chǎn)生相互干擾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三張背面完全相同的卡片,它們的正面分別標有數(shù)字﹣1,0,1,將他們背面朝上,洗勻后隨機抽取一張,把正面的數(shù)字作為b,接著再抽取一張,把正面的數(shù)字作為c,則滿足關(guān)于x的一元二次方程x2+bx+c=0有實數(shù)根的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在x軸上,OA=4,將線段OA繞點O順時針旋轉(zhuǎn)120°至OB的位置.

(1)求點B的坐標;

(2)求經(jīng)過點A.O、B的拋物線的解析式;

(3)在此拋物線的對稱軸上,是否存在點P,使得以點P、O、B為頂點的三角形是等腰三角形?若存在,求點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點,與y軸交于點C

(1)求此二次函數(shù)解析式;

(2)點D為拋物線的頂點,試判斷△BCD的形狀,并說明理由;

(3)將直線BC向上平移t(t>0)個單位,平移后的直線與拋物線交于M,N兩點(點M在y軸的右側(cè)),當△AMN為直角三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地上年度電價為0.8元/度,年用電量為1億度,本年度計劃將電價調(diào)至0.55~0.75元/度之間,經(jīng)測算,若電價調(diào)至x元/度,則本年度新增用電量y(億度)與(x-0.4)成反比例.又知當x=0.65時,y=0.8.

(1)求y與x之間的函數(shù)解析式;

(2)若每度電的成本價為0.3元,則電價調(diào)至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量×(實際電價-成本價)]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.

(1)求此反比例函數(shù)和一次函數(shù)的解析式;

(2)求AOB的面積;

(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案