【題目】如圖,已知的平分線BD和的平分線CD相交于D,
(1)AB與CD平行嗎?請說明理由;
(2)如果,求的度數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形AOBC的頂點C的坐標是(2,4),動點P從點A出發(fā),沿線段AO向終點O運動,同時動點Q從點B出發(fā),沿線段BC向終點C運動.點P、Q的運動速度均為每秒1個單位,設運動時間為t秒,過點P作PE⊥AO交AB于點E.
(1)求直線AB的解析式;
(2)在動點P、Q運動的過程中,以B、Q、E為頂點的三角形是直角三角形,直按寫出t的值;
(3)設△PEQ的面積為S,求S與時間t的函數(shù)關系,并指出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:若,求m,n的值.
解:,
.
,
,,
,,
,.
根據(jù)你的觀察,探究下面的問題:
(1)已知:,求的值;
(2)已知:的三邊長a,b,c都是正整數(shù),且滿足:,求的最大邊c的值;
(3)已知:,,直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅和小明在研究一個數(shù)學問題:已知AB∥CD,AB和CD都不經(jīng)過點E,探索∠E與∠A,∠C的數(shù)量關系.
(一)發(fā)現(xiàn):在如圖1中,小紅和小明都發(fā)現(xiàn):∠AEC=∠A+∠C;
小紅是這樣證明的:如圖7過點E作EQ∥AB.
∴∠AEQ=∠A( )
∵EQ∥AB,AB∥CD.
∴EQ∥CD( )
∴∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C 即∠AEC=∠A+∠C.
小明是這樣證明的:如圖7過點E作EQ∥AB∥CD.
∴∠AEQ=∠A,∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C
請在上面證明過程的橫線上,填寫依據(jù):兩人的證明過程中,完全正確的是 .
(二)嘗試:
(1)在如圖2中,若∠A=110°,∠C=130°,則∠E的度數(shù)為 ;
(2)在如圖3中,若∠A=20°,∠C=50°,則∠E的度數(shù)為 .
(三)探索:
裝置如圖4中,探索∠E與∠A,∠C的數(shù)量關系,并說明理由.
(四)猜想:
(1)如圖5,∠B、∠D、∠E、∠F、∠G之間有什么關系?(直接寫出結論)
(2)如圖6,你可以得到什么結論?(直接寫出結論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣2(1﹣m)x+m2=0的兩實數(shù)根為x1 , x2 , 則y=x1+x2+2x1x2的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖等腰,,,于點D,點P是BA延長線上一點,點O是線段AD上一點,,下面的結論:;是等邊三角形;;其中正確的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解決以下問題:
(1)已知方程組和方程組有相同的解,求的值;
(2)已知甲、乙兩人解關于的方程組甲正確解出而乙把抄錯,結果解得求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù);
(3)探究:小明認為如果條件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度數(shù)?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子里裝有8個紅球,4個黃球,3個白球,他們除了顏色外都相同,兩人做游戲,游戲規(guī)則如下:一個人抓住袋子,一個人摸球,若摸出紅球,摸球者勝,否則拿袋子的人獲勝.
(1)如果你參加游戲,為了盡可能的獲勝,你是做摸球的人還是做拿袋子的人?為什么?
(2)你說這個游戲公平嗎?如果公平,說明理由:如果不公平,請給出修改建議,使它對雙方都是公平的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com