如圖,等腰三角形ABC中,P為底邊BC上任意點,過P作兩腰的平行線分別與AB,AC相交于Q,R兩點,又P′是P關于直線RQ的對稱點,證明:P′在△ABC的外接圓上.

證明:連接P'Q,P'A,QR,
∵QP∥AC,PR∥AB
∴四邊形ARPQ為平行四邊形
∴∠QAR=∠RPQ,
由對稱關系得到,∠RPQ=∠RP'Q,
所以∠QAR=∠QP'R,
所以P',A,R,Q四點共圓,
∴∠QP'R=∠BAC
同理得到∠QBP'=∠QP'B,∠RP'A=∠BAP'
∴可以得到∠AP'B+∠BCA=180度,所以ABCP'四點共圓,
∴P′在△ABC的外接圓上.
分析:容易得到四邊形ARPQ為平行四邊形,由對稱關系得到,∠QAR=∠QP'R,所以P',A,R,Q四點共圓,進一步可以得到∠AP'B+∠BCA=180度,所以ABCP'四點共圓,P′在△ABC的外接圓上.
點評:此題主要考查了四點共圓,點的對稱性,三角形的全等證明,綜合性較強.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,則∠DCB等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,等腰三角形ABC的頂角為120°,底邊BC=
3
2
,則腰長AB為( 。
A、
2
2
B、
3
2
C、
1
2
D、
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時,應符合下面四個條件:①“正度”的值是非負數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當兩個等腰三角形相似時,它們的底角相等,顯然,它們的“正度”|sinα-
3
2
|
也相等,當α=60°時,|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因為此時正三角形的正度是1!
解答下列問題:
甲同學認為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學認為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教網(1)他們的說法合理嗎?為什么?
(2)對你認為不合理的方案加以改進,使其合理;
(3)請你再給出一種衡量等腰三角形“正度”的合理的表達式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,等腰三角形ABC中,AB=AC,AH垂直BC,點E是AH上一點,延長AH至點F,使FH=EH,
(1)求證:四邊形EBFC是菱形;
(2)如果∠BAC=∠ECF,求證:AC⊥CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰三角形ABC(AB=AC)的底角為50°,繞點A逆時針旋轉一定角度后得△AB′C′,那么△AB′C′繞點A旋轉
40
40
度后AC⊥B′C′.

查看答案和解析>>

同步練習冊答案