【題目】如圖,,,給出下列結(jié)論:①;②;③;④≌,其中正確的是( )
A. ①③④;B. ②③④;C. ①②④D. ①②③
【答案】C
【解析】
根據(jù)E=∠F=90°,∠B=∠C,AE=AF利用AAS可以證得△AEB≌△AFC,進而證得△CAN≌△BAM,△CDM≌△BDN,從而作出判斷.
解:∵∠E=∠F=90°,∠B=∠C,AE=AF,
∴△AEB≌△AFC(AAS),
∴BE=CF,∠EAB=∠FAC,
∴∠1+∠CAB=∠2+∠CAB,
∴∠1=∠2,故①②正確;
∵△AEB≌△AFC,
∴AC=AB
又∵∠CAB=∠CAB,∠B=∠C
∴△CAN≌△BAM,故④正確;
∵△CAN≌△BAM,
∴AM=AN,
又∵AC=AB
∴CM=BN,
又∵∠B=∠C,∠CDM=∠BDN,
∴△CDM≌△BDN,
∴CD=BD,
而DN與BD不一定相等,因而CD=DN不一定成立,故③錯誤.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O 為坐標原點,P是反比例函數(shù)圖象上任意一點,以P為圓心,PO為半徑的圓與x軸交于點 A、與y軸交于點B,連接AB.
(1)求證:P為線段AB的中點;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路,完成解答過程.
(1)作AD⊥BC于D,設BD=x,用含x的代數(shù)式表示CD,則CD=________;
(2)請根據(jù)勾股定理,利用AD作為“橋梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的長,再計算三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定x的一元一次方程ax=b的解為b﹣a,則稱該方程是“差解方程”,例如:3x=4.5的解為4.5﹣3=1.5,則該方程3x=4.5就是“差解方程”,請根據(jù)上述規(guī)定解答下列問題:
(1)已知關于x的一元一次方程4x=m是“差解方程”,則m=______.
(2)已知關于x的一元一次方程4x=ab+a是“差解方程”,它的解為a,則a+b=_____.
(3)已知關于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代數(shù)式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在矩形ABCD中.點O在邊AB上,∠AOC=∠BOD.求證:AO=OB.
(2)如圖,AB是的直徑,PA與相切于點A,OP與相交于點C,連接CB,∠OPA=40°,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】商場銷售甲、乙兩種商品,它們的進價和售價如下表所示,
進價(元) | 售價(元) | |
甲 | 15 | 20 |
乙 | 35 | 43 |
(1)若該商場購進甲、乙兩種商品共 100 件,恰好用去 2700 元,求購進甲、乙兩種商品各多少件?
(2)該商場為使銷售甲、乙兩種商品共 100 件的總利潤(利潤=售價-進價)不少于750 元,且不超過 760 元,請你幫助該商場設計相應的進貨方案.
(3)若商場銷售甲、乙兩種商品的總利潤(利潤=售價-進價)是 103 元,求銷售甲、 乙兩種商品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是一個正方體的表面展開圖,請回答下列問題:
(1)與面B、面C相對的面分別是 和 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相對兩個面所表示的代數(shù)式的和都相等,求E、F代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,圖2中,正方形ABCD的邊長為6,點P從點B出發(fā)沿邊BC—CD以每秒2個單位長的速度向點D勻速運動,以BP為邊作等邊三角形BPQ,使點Q在正方形ABCD內(nèi)或邊上,當點Q恰好運動到AD邊上時,點P停止運動。設運動時間為t秒(t≥0)。
(1)當t=2時,點Q到BC的距離=_____;
(2)當點P在BC邊上運動時,求CQ的最小值及此時t的值;
(3)若點Q在AD邊上時,如圖2,求出t的值;
(4)直接寫出點Q運動路線的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸的另一個交點為C.
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的點,連接OP交直線AB于點Q.設點P的橫坐標為m,PQ與OQ的比值為y,求y與m的關系式,并求出PQ與OQ的比值的最大值;
(3)點D是拋物線對稱軸上的一動點,連接OD、CD,設△ODC外接圓的圓心為M,當sin∠ODC的值最大時,求點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com