如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結(jié)論是


  1. A.
    ①②③
  2. B.
    ①④⑤
  3. C.
    ①③④
  4. D.
    ③④⑤
B
分析:解此題的關(guān)鍵在于判斷△DEF是否為等腰直角三角形,作常規(guī)輔助線連接CF,由SAS定理可證△CFE和△ADF全等,從而可證∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可證①正確,②錯誤,再由割補法可知④是正確的;
判斷③,⑤比較麻煩,因為△DEF是等腰直角三角形DE=DF,當(dāng)DF與BC垂直,即DF最小時,DE取最小值4,故③錯誤,△CDE最大的面積等于四邊形CDEF的面積減去△DEF的最小面積,由③可知⑤是正確的.故只有①④⑤正確.
解答:解:連接CF;
∵△ABC是等腰直角三角形,
∴∠FCB=∠A=45°,CF=AF=FB;
∵AD=CE,
∴△ADF≌△CEF;
∴EF=DF,∠CFE=∠AFD;
∵∠AFD+∠CFD=90°,
∴∠CFE+∠CFD=∠EFD=90°,
∴△EDF是等腰直角三角形.
因此①正確.
當(dāng)D、E分別為AC、BC中點時,四邊形CDFE是正方形.
因此②錯誤.
∵△ADF≌△CEF,
∴S△CEF=S△ADF∴S四邊形CEFD=S△AFC
因此④正確.
由于△DEF是等腰直角三角形,因此當(dāng)DE最小時,DF也最。
即當(dāng)DF⊥AC時,DE最小,此時DF=BC=4.
∴DE=DF=4;
因此③錯誤.
當(dāng)△CEF面積最大時,由④知,此時△DEF的面積最。
此時S△CEF=S四邊形CEFD-S△DEF=S△AFC-S△DEF=16-8=8;
因此⑤正確.
故選B.
點評:本題考查知識點較多,綜合性強,能力要求全面,難度較大.但作為選擇題可采用排除法等特有方法,使此題難度稍稍降低一些.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結(jié)論是(  )
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊精英家教網(wǎng)上運動,且保持AD=CE.連接DE、DF、EF.
①求證:△DFE是等腰直角三角形;
②在此運動變化的過程中,四邊形CDFE的面積是否保持不變?試說明理由.
③求△CDE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,則
ADDC
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點M、N是AB上任意兩點,且∠MCN=45°,點T為AB的中點.以下結(jié)論:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結(jié)論的序號是( 。
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.
(1)在此運動變化的過程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面積.

查看答案和解析>>

同步練習(xí)冊答案