【題目】已知BF平分的外角,D為射線(xiàn)BF上一動(dòng)點(diǎn).

1)如圖所示,若,求證:;

2)在D點(diǎn)運(yùn)動(dòng)的過(guò)程中,試比較的大小,并說(shuō)明你的理由.

【答案】1)證明見(jiàn)解析;(2.理由見(jiàn)解析.

【解析】

1)在BE上取點(diǎn)M,使BM=BA,連接DM,可證明△ADB≌△MDB,可得DM=DC,可證得∠DAB=DCB,再結(jié)合三角形內(nèi)角和定理可證得結(jié)論;
2)由(1)可得到DM=DC,在△DMC中,可得DM+DCBM+BC,則有DA+DCBA+BC,可得出結(jié)論.

解:(1)證明:如圖1,在BE上取點(diǎn)M,使BM=BA,連接DM,

∵BF平分∠ABE,
∴∠ABD=∠MBD,
在△ABD和△MBD中,

∴△ABD≌△MBD(SAS),
∴DM=DA,∠DAB=∠DMB,
又∵DA=DC,
∴DM=DC,
∴∠DMB=∠DCB,
∴∠DAB=∠DCB,
∴∠ABC=∠ADC;

2

理由如下:

在(1)中可得△ABD≌△MBD,
∴AD=MD,AB=MB,
在△DMC中,由三角形三邊關(guān)系可得DM+DC>MC,
∴DM+DC>MB+BC,
∴DA+DC>BA+BC,
即BA+BC<DA+DC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中每個(gè)小正方形邊長(zhǎng)都是1.

(1)畫(huà)出ABC關(guān)于直線(xiàn)1對(duì)稱(chēng)的圖形A1BlCl;

(2)在直線(xiàn)l上找一點(diǎn)P,使PB=PC;(要求在直線(xiàn)1上標(biāo)出點(diǎn)P的位置)

(3)連接PA、PC,計(jì)算四邊形PABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ABCD中,點(diǎn)EAD上,請(qǐng)僅用無(wú)刻度直尺按要求作圖(保留作圖痕跡,不寫(xiě)作法)

1)在圖1中,過(guò)點(diǎn)E作直線(xiàn)EF□ABCD分成兩個(gè)全等的圖形;

2)在圖2中,DEDC,請(qǐng)你作出∠BAD的平分線(xiàn)AM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,DCE的角平分線(xiàn)CG的反向延長(zhǎng)線(xiàn)和∠ABE的角平分線(xiàn)BF交于點(diǎn)F,E﹣F=33°,則∠E=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】沿海某城市A的正南方200千米B處有一臺(tái)風(fēng)中心,其中心最大風(fēng)力為12級(jí),每遠(yuǎn)離臺(tái)風(fēng)中心20千米,風(fēng)力就會(huì)減弱一級(jí),該臺(tái)風(fēng)中心現(xiàn)在15千米/時(shí)的速度沿北偏東30°方向往C移動(dòng)且臺(tái)風(fēng)中心風(fēng)力不變,若城市所受風(fēng)力達(dá)到或超過(guò)5級(jí),則稱(chēng)為受臺(tái)風(fēng)影響.

1)該城市是否受到此次臺(tái)風(fēng)影響?請(qǐng)說(shuō)明理由;

2)若會(huì)受到臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市持續(xù)時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD是高,CE是中線(xiàn),DG垂直平分CE,連接DE

1)求證:DCBE;

2)若∠AEC72°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖8,AB兩地之間有一座山,以前從A地到B地需要經(jīng)過(guò)C.現(xiàn)在政府出資打通了一條山嶺隧道,使從A地到B地可沿直線(xiàn)AB直接到達(dá).已知BC=8km,∠A=45°,∠B=53°.

(1)求點(diǎn)C到直線(xiàn)AB的距離;

(2)求現(xiàn)在從A地到B地可比原來(lái)少走多少路程?(結(jié)果精確到0.1km;參考數(shù)據(jù):≈1.41,sin53°≈0.80,cos53°≈0.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為12 cm的正三角形,動(dòng)點(diǎn)PAB2 cm/s勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QBC1 cm/s勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,則當(dāng)△PBQ為直角三角形時(shí),t的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過(guò)CD延長(zhǎng)線(xiàn)上一點(diǎn)E作⊙O的切線(xiàn)交AB的延長(zhǎng)線(xiàn)于F,切點(diǎn)為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點(diǎn)N,若sinE=AK=,求CN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案