如圖,已知拋物線y=+bx+c與y軸相交于C,與x軸相交于A、B,點A的坐標為(2,0),點C的坐標為(0,-1).
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連接DC,當△DCE的面積最大時,求點D的坐標;
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形?若存在,求點P的坐標;若不存在,說明理由.

【答案】分析:(1)由于拋物線的解析式中只有兩個待定系數(shù),因此只需將A、C兩點的坐標代入拋物線中即可求出二次函數(shù)的解析式.
(2)根據(jù)A、C的坐標,易求得直線AC的解析式,可設D點的橫坐標,根據(jù)直線AC的解析式可表示出E點的縱坐標,即可得到DE的長,以DE為底,D點橫坐標為高即可得到△CDE的面積,從而得到關于△CDE的面積與D點橫坐標的函數(shù)關系式,根據(jù)所得函數(shù)的性質(zhì)即可求出△CDE的面積最大值及對應的D點坐標.
(3)根據(jù)拋物線的解析式,可求出B點的坐標,進而能得到直線BC的解析式,設出點P的橫坐標,根據(jù)直線BC的解析式表示出P點的縱坐標,然后利用坐標系兩點間的距離公式分別表示出△ACP三邊的長,從而根據(jù):①AP=CP、②AC=AP、③CP=AC,三種不同等量關系求出符合條件的P點坐標.
解答:解:(1)由于拋物線經(jīng)過A(2,0),C(0,-1),
則有:,
解得;
∴拋物線的解析式為:y=-x-1.

(2)∵A(2,0),C(0,-1),
∴直線AC:y=x-1;
設D(x,0),則E(x,x-1),
故DE=0-(x-1)=1-x;
∴△DCE的面積:S=DE×|xD|=×(1-x)×x=-x2+x=-(x-1)2+,
因此當x=1,
即D(1,0)時,△DCE的面積最大,且最大值為

(3)由(1)的拋物線解析式易知:B(-1,0),
可求得直線BC的解析式為:y=-x-1;
設P(x,-x-1),因為A(2,0),C(0,-1),則有:
AP2=(x-2)2+(-x-1)2=2x2-2x+5,
AC2=5,CP2=x2+(-x-1+1)2=2x2;
①當AP=CP時,AP2=CP2,有:
2x2-2x+5=2x2,解得x=2.5,
∴P1(2.5,-3.5);
②當AP=AC時,AP2=AC2,有:
2x2-2x+5=5,解得x=0(舍去),x=1,
∴P2(1,-2);
③當CP=AC時,CP2=AC2,有:
2x2=5,解得x=±,
∴P3,--1),P4(-,-1);
綜上所述,存在符合條件的P點,且P點坐標為:P1(2.5,-3.5)、P2(1,-2)、P3,--1)、P4(-,-1).
點評:此題主要考查了二次函數(shù)解析式的確定、圖形面積的求法、二次函數(shù)最值的應用、等腰三角形的構成條件等重要知識,同時還考查了分類討論、數(shù)形結(jié)合的數(shù)學思想,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數(shù)關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

查看答案和解析>>

同步練習冊答案