【題目】如圖,AB是△ACD的外接圓⊙O的直徑,CD交AB于點(diǎn)F,其中AC=AD,AD的延長線交過點(diǎn)B的切線BM于點(diǎn)E.
(1)求證:CD∥BM;
(2)連接OE交CD于點(diǎn)G,若DE=2,AB=4,求OG的長.
【答案】(1)見解析;(2)OG=.
【解析】
(1)根據(jù)垂徑定理得AB⊥CD,結(jié)合切線的性質(zhì),得AB⊥BM,進(jìn)而即可得到結(jié)論;
(2)連接BD,證明BAD~EAB,易得AB2=ADAE,從而求出AE=10,根據(jù)勾股定理得BE=2,OE=2,由DF∥BE,根據(jù)平行線分線段成比例定理可得AF=,OF=,由FG∥BE,根據(jù)平行線分線段成比例定理即可求解.
(1)∵AB是△ACD的外接圓⊙O的直徑,BM是⊙O的切線,
∴AB⊥BM,
∵AC=AD,
∴,
∴AB⊥CD,
∴CD∥BM;
(2)連接BD,
∵AB是⊙O的直徑,
∴BD⊥AE,
∵AB⊥BE,
∴∠ADB=∠ABE=90°,
又∵∠BAD=∠EAB,
∴BAD~EAB,
∴AB2=ADAE,
∴(4)2=AD(AD+2),
∴AD=8或AD=-10(舍去),
∴AE=10,
∴BE===2,
∴OE==2,
∵DF∥BE,
∴=,
∴=,
∴AF=,
∴OF=AF-OA=,
∵FG∥BE,
∴=,
∴=,
∴OG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(-2,1),B(0,4),C(8,16),O(0,0),P(m,n),拋物線y=ax2(a≠0)經(jīng)過A,B,C,其中的一點(diǎn),
(1)求拋物線y=ax2(a≠0)的解析式;
(2)若直線y=mx(m≠0)與直線y=nx(n≠0)分別經(jīng)過點(diǎn)A與點(diǎn)C,判斷點(diǎn)P(m,n)是否在反比例函數(shù)y=-的圖象上;
(3)若點(diǎn)P(m,n)是反比例函數(shù)y=-的圖象上任一點(diǎn),且直線y=mx(m≠0)與直線y=nx(n≠0)分別與拋物線y=ax2(a≠0)交于點(diǎn)M,點(diǎn)N(不同于原點(diǎn)),求證:M,B,N三點(diǎn)在一條直線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)畢業(yè)生小王響應(yīng)國家“自主創(chuàng)業(yè)”的號(hào)召,利用銀行小額無息貸款開辦了一家飾品店.該店購進(jìn)一種今年新上市的飾品進(jìn)行銷售,飾品的進(jìn)價(jià)為每件40元,售價(jià)為每件60元時(shí),每月可賣出300件.市場調(diào)查反映:調(diào)整價(jià)格時(shí),售價(jià)每漲1元每月要少賣10件;售價(jià)每下降1元每月要多賣20件.為了獲得更大的利潤,現(xiàn)將飾品售價(jià)調(diào)整為x(元/件),每月飾品銷量為y(件),月利潤為w(元).
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如何確定售價(jià)才能使月利潤最大?求最大月利潤;
(3)為了使每月利潤不少于6000元應(yīng)如何控制售價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,點(diǎn)D在上,點(diǎn)E在弦AB上(E不與A重合),且四邊形BDCE為菱形.
(1)求證:AC=CE;
(2)求證:BC2﹣AC2=ABAC;
(3)已知⊙O的半徑為3.
①若=,求BC的長;
②當(dāng)為何值時(shí),ABAC的值最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,cosA=,點(diǎn)D是斜邊AB上的動(dòng)點(diǎn)且不與A,B重合,連接CD,點(diǎn)B'與點(diǎn)B關(guān)于直線CD對稱,連接B'D,當(dāng)B'D垂直于Rt△ABC的直角邊時(shí),BD的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C,D都在邊長為1的小正方形網(wǎng)格的格點(diǎn)上,過點(diǎn)M(1,-2)的拋物線y=mx2+2mx+n(m>0)可能還經(jīng)過( )
A.點(diǎn)AB.點(diǎn)BC.點(diǎn)CD.點(diǎn)D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2),延長CB交x軸于點(diǎn)A1,作正方形A1B1C1C;延長C1B1交x軸于點(diǎn)A2,作正方形A2B2C2C1…按這樣的規(guī)律進(jìn)行下去,第1個(gè)正方形的面積為___;第4個(gè)正方形的面積為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△A1B1C;
(2)以原點(diǎn)O為對稱中心,再畫出與△ABC關(guān)于原點(diǎn)O對稱的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線經(jīng)過、兩點(diǎn),與x軸交于另一點(diǎn)B.
求拋物線的解析式;
已知點(diǎn)在第一象限的拋物線上,求點(diǎn)D關(guān)于直線BC對稱的點(diǎn)的坐標(biāo);
如圖2,若拋物線的對稱軸為拋物線頂點(diǎn)與直線BC相交于點(diǎn)F,M為直線BC上的任意一點(diǎn),過點(diǎn)M作交拋物線于點(diǎn)N,以E,F,M,N為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)N的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com