【題目】如圖1,在RtABC中,C=90,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連結(jié)PQ。若設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),解答下列問題:

(1)當(dāng)t為何值時(shí)?PQ//BC?

(2)設(shè)APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?

(3)是否存在某一時(shí)刻t,使線段PQ恰好把ABC的周長和面積同時(shí)平分?若存在求出此時(shí)t的值;若不存在,說明理由。

(4)如圖2,連結(jié)PC,并把PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在求出此時(shí)t的值;若不存在,說明理由。

【答案】詳見解析

【解析】

試題(1)當(dāng)PQBC時(shí),我們可得出三角形APQ和三角形ABC相似,那么可得出關(guān)于AP,AB,AQ,AC的比例關(guān)系,我們觀察這四條線段,已知的有AC,根據(jù)P,Q的速度,可以用時(shí)間t表示出AQ,BP的長,而AB可以用勾股定理求出,這樣也就可以表示出AP,那么將這些數(shù)值代入比例關(guān)系式中,即可得出t的值.

(2)求三角形APQ的面積就要先確定底邊和高的值,底邊AQ可以根據(jù)Q的速度和時(shí)間t表示出來.關(guān)鍵是高,可以用AP和A的正弦值來求.AP的長可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ邊上的高后,就可以得出y與t的函數(shù)關(guān)系式.

(3)如果將三角形ABC的周長和面積平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的長,那么可以求出此時(shí)t的值,我們可將t的值代入(2)的面積與t的關(guān)系式中,求出此時(shí)面積是多少,然后看看面積是否是三角形ABC面積的一半,從而判斷出是否存在這一時(shí)刻.

(4)過點(diǎn)P作PMAC于M,PNBC于N,那么PNCM就是個(gè)矩形,解題思路:通過三角形BPN和三角形ABC相似,得出關(guān)于BP,PN,AB,AC的比例關(guān)系,即可用t表示出PN的長,也就表示出了MC的長,要想使四邊形PQP'C是菱形,PQ=PC,根據(jù)等腰三角形三線合一的特點(diǎn),QM=MC,這樣有用t表示出的AQ,QM,MC三條線段和AC的長,就可以根據(jù)AC=AQ+QM+MC來求出t的值.求出了t就可以得出QM,CM和PM的長,也就能求出菱形的邊長了.

試題解析:(1) 連接PQ,

時(shí),PQ//BC,即

t=

(2) 過P作PDAC于點(diǎn)D,則有

,

PD=

y==(0<t<2)

(3) 若平分周長則有:

AP+AQ=(AB+AC+BC),

即:5-t+2t=6,

∴ t=1

當(dāng)t=1時(shí),y=3.4;而三角形ABC的面積為6,顯然不存在。

過P作PDAC于點(diǎn)D,若QD=CD,則PQ=PC,四邊形PQP'C就為菱形。

同(2)方法可求AD=,所以:

-2t=4-;

解之得:t=。

即t=時(shí),四邊形PQP'C為菱形。

考點(diǎn): 相似形綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為F,則EF的長為( 。

A. 4﹣2 B. 3﹣4 C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,九(1)班課外活動(dòng)小組利用標(biāo)桿測量學(xué)校旗桿的高度,已知標(biāo)桿高度CD=3m,標(biāo)桿與旗桿的水平距離BD=15m,人的眼睛與地面的高度EF=1.6m,人與標(biāo)桿CD的水平距離DF=2m,人的眼睛E、標(biāo)桿頂點(diǎn)C和旗桿頂點(diǎn)A在同一直線,求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永州植物園“清風(fēng)園”共設(shè)11個(gè)主題展區(qū).為推進(jìn)校園文化建設(shè),某校九年級(1)班組織部分學(xué)生到“清風(fēng)園”參觀后,開展“我最喜歡的主題展區(qū)”投票調(diào)查.要求學(xué)生從“和文化”、“孝文化”、“德文化”、“理學(xué)文化”、“瑤文化”五個(gè)展區(qū)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果繪制出了兩幅不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.結(jié)合圖中信息,回答下列問題

1)參觀的學(xué)生總?cè)藬?shù)為   ;

2)在扇形統(tǒng)計(jì)圖中最喜歡“瑤文化”的學(xué)生占參觀總學(xué)生數(shù)的百分比為   ;

3)補(bǔ)全條形統(tǒng)計(jì)圖;

4)從最喜歡“德文化”的學(xué)生中隨機(jī)選兩人參加知識搶答賽,最喜歡“德文化”的學(xué)生甲被選中的概率為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)Ay軸上且點(diǎn)A坐標(biāo)為(0,4),BCx軸正半軸上,點(diǎn)CB點(diǎn)右側(cè),反比例函數(shù)x>0)的圖象分別交邊AD,CDE,F連結(jié)BF,已知BC=k,AE=CFS四邊形ABFD=20,k= _________

[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/17/2120855162306560/2123559773659136/STEM/85e8312ee4314e6b84d61ad733d78d14.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線yax2+bx+c經(jīng)過點(diǎn)A、B、C

(1)求拋物線的解析式;

(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對稱軸lx軸交于一點(diǎn)E,連接PE,交CDF,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一名徒步愛好者來衡陽旅行,他從賓館C出發(fā),沿北偏東30°的方向行走2000米到達(dá)石鼓書院A處,參觀后又從A處沿正南方向行走一段距離,到達(dá)位于賓館南偏東45°方向的雁峰公園B處,如圖所示.

(1)求這名徒步愛好者從石鼓書院走到雁峰公園的途中與賓館之間的最短距離;

(2)若這名徒步愛好者以100米/分的速度從雁峰公園返回賓館,那么他在15分鐘內(nèi)能否到達(dá)賓館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.

(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=﹣x﹣1x軸,y軸的交點(diǎn)分別為A、B,以x=﹣1為對稱軸的拋物線y=x2+bx+cx軸分別交于點(diǎn)A、C,直線x=﹣1x軸交于點(diǎn)D.

(1)求拋物線的解析式;

(2)在線段AB上是否存在一點(diǎn)P,使以A,D,P為頂點(diǎn)的三角形與△AOB相似?若存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;

(3)若點(diǎn)Q在第三象限內(nèi),且tan∠AQD=2,線段CQ是否存在最小值,如果存在直接寫出最小值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案