已知二次函數(shù)y=(x-1)(x-4)的圖象與x軸交于A、B兩點(diǎn)(A在B的左邊),與y軸交于點(diǎn)C.
(1)求出A、B、C三點(diǎn)的坐標(biāo);
(2)求△ABC的面積;
(3)在y軸上是否存在點(diǎn)P,使P、A、C能組成以AC為腰的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
分析:(1)令x=0,代入二次函數(shù)求得y的值作為與y軸交點(diǎn)坐標(biāo)的縱坐標(biāo),將y=0代入二次函數(shù)求得x的值作為與x軸交點(diǎn)的橫坐標(biāo);
(2)利用上題求得的與坐標(biāo)軸的交點(diǎn)坐標(biāo)得到OC=4、AB=3,就可以求S△ABC
(3)假設(shè)存在.設(shè)點(diǎn)P的坐標(biāo)為(0,y),分C為頂角的頂點(diǎn)時(shí)和A為頂角的頂點(diǎn)時(shí)兩種情況求得點(diǎn)P的坐標(biāo)即可.
解答:解:(1)當(dāng)x=0時(shí)y=(-1)×(-4)=4
∴C的坐標(biāo)(0,4)
當(dāng)y=0時(shí)設(shè)(x-1)(x-4)=0
解得x1=1 x2=4
∵A在B的左邊
∴A(1,0)B(4,0)…(2分)

(2)∵C(0,4)、A(1,0)、B(4,0)
∴OC=4  AB=3
∴S△ABC=
1
2
OC•AB=6 …(4分)

(3)存在.
設(shè)點(diǎn)P的坐標(biāo)為(0,y),
由(2)知OC=4,OA=1
在RT△AOC中AC=
0A2-0C2
=
17

∴C為頂角的頂點(diǎn)時(shí),則CP=AC,
|y-4|=
17

解得y1=4+
17
y2=4-
17

∴當(dāng)P為(0,4+
17
)或(0,4-
17
)時(shí)P、A、C組成的AC為腰的等腰△…(6分)
∴A為頂角的頂點(diǎn)時(shí),則AC=AP
∵OA⊥PC
∴OC=OP  …(8分)
即|y|=4,
解得y1=-4,y2=4(舍去)
∴當(dāng)P(0,-4)時(shí)P、A、C組成了以AC為腰的等腰△…(8分)
綜上所述當(dāng)P的坐標(biāo)為(4+
17
),(4-
17
),(0,-4)時(shí)是P、A、C組成了以AC為腰的等腰△…(9分)
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合知識(shí),解題的關(guān)鍵是正確的求出拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo),這是下一步做題的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象過(guò)點(diǎn)A(1,2),B(3,2),C(0,-1),D(2,3).點(diǎn)P(x1,y1),Q(x2,y2)也在該函數(shù)的圖象上,當(dāng)0<x1<1,2<x2<3時(shí),y1與y2的大小關(guān)系正確的是( 。
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,3),頂點(diǎn)坐標(biāo)為(1,4),
(1)求這個(gè)二次函數(shù)的解析式;
(2)求圖象與x軸交點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(3)圖象與y軸交點(diǎn)為點(diǎn)C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莒南縣二模)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;
③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于-1的實(shí)數(shù)根;⑤2a+b=0.其中,正確的說(shuō)法有
②④⑤
②④⑤
.(請(qǐng)寫出所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),已知A點(diǎn)坐標(biāo)為(-1,0),且對(duì)稱軸為直線x=2,則B點(diǎn)坐標(biāo)為
(5,0)
(5,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案