【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點.若⊙O的半徑為8,則GE+FH的最大值為__________ .
科目:初中數(shù)學 來源: 題型:
【題目】5G時代即將來臨,湖北省提出“建成全國領(lǐng)先、中部一流5G網(wǎng)絡”的戰(zhàn)略目標.據(jù)統(tǒng)計,目前湖北5G基站的數(shù)量有1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座.
(1)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率;
(2)若2023年保持前兩年5G基站數(shù)量的年平均增長率不變,到2023年底,全省5G基站數(shù)量能否超過29萬座?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若二次函數(shù)y=kx2+(3k+2)x+2k+2.
(1)求證:拋物線與x軸有交點.
(2)經(jīng)研究發(fā)現(xiàn),無論k為何值,拋物線經(jīng)過某些特定的點,請求出這些定點.
(3)若y1=2x+2,在﹣2<x<﹣1范圍內(nèi),請比較y1,y的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過點,是中點.
(1)求此二次函數(shù)的解析式.
(2)已知,點在拋物線上,點在軸上,當四點構(gòu)成以為邊的平行四邊形,求此時點的坐標.
(3)將拋物線在軸下方的部分沿軸向上翻折,得曲線(為關(guān)于軸的對稱點),在原拋物線軸的上方部分取一點,連接,與翻折后的曲線交于點. 若的面積是面積的3倍,這樣的點是否存在?若存在,求出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,B,C,E是同一直線上的三個點, 四邊形ABCD與四邊形CEFG都是正方形.連接BG,DE.
(1)探究BG與DE之間的數(shù)量關(guān)系, 并證明你的結(jié)論;
(2)當正方形CEFG繞點C在平面內(nèi)順時針轉(zhuǎn)動到如圖②所示的位置時,線段BG和ED有何關(guān)系? 寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC交于點F.
(1)求證:FD=CD;
(2)若AE=8,tan∠E=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形的頂點,的坐標分別為(2,0),(0,3) ,拋物線:經(jīng)過,兩點.拋物線的頂點為.
(1)求拋物線的表達式和點的坐標;
(2)點是拋物線對稱軸上一動點,當為等腰三角形時,求所有符合條件的點的坐標;
(3)如圖2,現(xiàn)將拋物線進行平移,保持頂點在直線上,若平移后的拋物線與射線只有一個公共點.設平移后拋物線的頂點橫坐標為,求的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:①abc>0;②2a+b=0;③a-b+c>0;④當x≠1時,a+b>ax2+bx:⑤4ac<b2.其中正確的有____________(只填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△DEF中,DF=EF,FG是△DEF的中線,若點Q為△DEF內(nèi)一點且Q滿足∠QDF=∠QED=∠QFE,FQ=9,=,則DQ+EQ=( )
A.10B.C.6+6D.7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com