【題目】把下列各數(shù)填入表示它所在的數(shù)集的括號里
﹣(﹣2.3),,0,﹣,30%,π,﹣|﹣2013|,﹣5,
(1)負整數(shù)集合[ …]
(2)正有理數(shù)集合[ …]
(3)分數(shù)集合[ …]
【答案】(1)﹣,﹣|﹣2013|;(2)﹣(﹣2.3),,30%,;(3)﹣(﹣2.3),,30%,﹣5,.
【解析】
(1)負整數(shù)是指小于0的整數(shù),據(jù)此判斷即可;
(2)正有理數(shù)是指大于0的有理數(shù),據(jù)此判斷即可;
(3)分數(shù)包括正分數(shù)與負分數(shù),其中有限小數(shù)與無限循環(huán)小數(shù)也是分數(shù),據(jù)此判斷即可.
∵﹣(﹣2.3)=2.3,﹣|﹣2013|=﹣2013,
∴負整數(shù)集合[﹣,﹣|﹣2013|,…];
正有理數(shù)集合[﹣(﹣2.3),,30%,,…];
分數(shù)集合[﹣(﹣2.3),,30%,﹣5,,…].
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達C地的過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時,兩車相遇;②乙車出發(fā)1.5h時,兩車相距170km;③乙車出發(fā)h時,兩車相遇;④甲車到達C地時,兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形的頂點分別在軸的正半軸上,頂點的坐標為.點是邊上的一個動點(不與重合),反比例函數(shù)的圖象經(jīng)過點且與邊交于點,連接.
(1)當點是邊的中點時,求點坐標(用含式子表示)
(2)在點的運動過程中,試證明:是一個定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角板中的兩個直角頂點重合在一起,即按如圖所示的方式疊放在一起,其中∠A=60°,∠B=30,∠D=45°.
(1)若∠BCD=45°,求∠ACE的度數(shù).
(2)若∠ACE=150°,求∠BCD的度數(shù).
(3)由(1)、(2)猜想∠ACE與∠BCD存在什么樣的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與X軸交于點C,其中點A(﹣1,3)和點B(﹣3,n).
(1)填空:m= ,n= .
(2)求一次函數(shù)的解析式和△AOB的面積.
(3)根據(jù)圖象回答:當x為何值時,kx+b≥(請直接寫出答案) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于有理數(shù)a,b,定義一種新運算“⊙”,規(guī)定a⊙b=|a+b|+|a﹣b|.
(1)計算2⊙(﹣3)的值;
(2)當a,b在數(shù)軸上的位置如圖所示時,化簡a⊙b;
(3)已知(a⊙a)⊙a=8+a,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條“折線數(shù)軸”。圖中點A表示-10,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距28個長度單位,動點P從點A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴?fù)原速,設(shè)運動的時間為t秒,問:
(1)動點P從點A運動至點C需要________秒;
(2)P、Q兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少?
(3)求當t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
(1)﹣a2b+(ab2﹣3a2b)﹣2(ab2﹣2a2b),其中a=2,b=1;
(2)2(a2﹣b)+3a2﹣2(a2+b),其中(a2+m﹣1)2+|b+m+2|=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com