【題目】如圖,在正方形中,點(diǎn)分別是上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),且,延長(zhǎng)到,使,連接.
(1)依題意將圖形補(bǔ)全;
(2)小華通過(guò)觀察、實(shí)驗(yàn)、提出猜想:在點(diǎn)運(yùn)動(dòng)過(guò)程中,始終有.經(jīng)過(guò)與同學(xué)們充分討論,形成了幾種證明的想法:
想法一:連接,證明是等腰直角三角形;
想法二:過(guò)點(diǎn)作的垂線,交的延長(zhǎng)線于,可得是等腰直角三角形,證明;
……
請(qǐng)參考以上想法,幫助小華證明.(寫(xiě)出一種方法即可)
【答案】(1)圖見(jiàn)解析;(2)想法一的證明見(jiàn)解析;想法二的證明見(jiàn)解析.
【解析】
(1)先分別在上取點(diǎn),使得,再延長(zhǎng)到,使,然后連接即可;
(2)想法一:先根據(jù)正方形的性質(zhì)、三角形全等的判定定理與性質(zhì)得出,,再根據(jù)角的和差、等量代換可得,從而可得是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)可得,最后根據(jù)垂線平分線的判定與性質(zhì)可得,由此即可得證;
想法二:先根據(jù)正方形的性質(zhì)、三角形全等的判定定理與性質(zhì)得出,從而可得是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)可得,然后根據(jù)三角形全等的判定定理與性質(zhì)得出,由此即可得證.
(1)先分別在上取點(diǎn),使得,再延長(zhǎng)到,使,然后連接,補(bǔ)全圖形如下所示:
(2)想法一:如圖,連接
四邊形ABCD是正方形
在和中,
,
,即
是等腰直角三角形
又
是線段FG的垂直平分線
;
想法二:如圖,過(guò)點(diǎn)作的垂線,交的延長(zhǎng)線于,連接HF
四邊形ABCD是正方形
在和中,
是等腰直角三角形
,即
,即
在和中,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五名學(xué)生投籃球,每人投10次,統(tǒng)計(jì)他們每人投中的次數(shù).得到五個(gè)數(shù)據(jù),并對(duì)數(shù)據(jù)進(jìn)行整理和分析給出如下信息:
平均數(shù) | 中位數(shù) | 眾數(shù) |
m | 6 | 7 |
則下列選項(xiàng)正確的是( )
A.可能會(huì)有學(xué)生投中了8次
B.五個(gè)數(shù)據(jù)之和的最大值可能為30
C.五個(gè)數(shù)據(jù)之和的最小值可能為20
D.平均數(shù)m一定滿足
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在正方形ABCD中,G是CD邊上的一個(gè)動(dòng)點(diǎn)(不與C、D重合),以CG為邊在正方形ABCD外作一個(gè)正方形CEFG,連結(jié)BG、DE,如圖①.直接寫(xiě)出線段BG、DE的關(guān)系 ;
(2)將圖①中的正方形CEFG繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)任意角度,如圖②,試判斷(1)中的結(jié)論是否成立?若成立,直接寫(xiě)出結(jié)論,若不成立,說(shuō)明理由;
(3)將(1)中的正方形都改為矩形,如圖③,再將矩形CEFG繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)任意角度,如圖④,若AB=a,BC=b;CE =ka,CG=kb,()試判斷(1)中的結(jié)論是否仍然成立?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市購(gòu)進(jìn)一批成本為每件元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件)與銷售單價(jià)(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量與銷售單價(jià)之間的函數(shù)關(guān)系式;
(2)若超市按單價(jià)不低于成本價(jià),且不高于元銷售,則銷售單價(jià)定為多少,才能使銷售該商品每天獲得的利潤(rùn)(元)最大?
(3)若超市要使銷售該商品每天獲得的利潤(rùn)為元,則每天的銷售量應(yīng)為多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,線段的垂直平分線交于,分別交于,連接.
(1)證明:四邊形是菱形;
(2)在(1)的條件下,如果,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn),兩種新型節(jié)能臺(tái)燈共120盞,這兩種臺(tái)燈的進(jìn)價(jià)和售價(jià)如表所示:
價(jià)格 類型 | 進(jìn)價(jià)(元/盞) | 售價(jià)(元/盞) |
40 | 55 | |
60 | 80 |
(1)若商場(chǎng)恰好用完預(yù)計(jì)進(jìn)貨款5500元,則應(yīng)這購(gòu)進(jìn)兩種臺(tái)燈各多少盞?
(2)若商場(chǎng)規(guī)定型臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)型臺(tái)燈數(shù)量的3倍,應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷售完這兩種臺(tái)燈時(shí)獲得的毛利潤(rùn)最多?最多毛利潤(rùn)為多少元?(毛利潤(rùn)=銷售收入-進(jìn)貨成本).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.
(1)請(qǐng)用樹(shù)狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.
(2)若已確定甲打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,求恰好選中乙同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA是⊙O的切線,切點(diǎn)為A,AC是⊙O的直徑,連接OP交⊙O于E.過(guò)A點(diǎn)作AB⊥PO于點(diǎn)D,交⊙O于B,連接BC,PB.
(1)求證:PB是⊙O的切線;
(2)求證:E為△PAB的內(nèi)心;
(3)若cos∠PAB=,BC=1,求PO的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成.長(zhǎng)方形的長(zhǎng)為16m,寬為6m,拋物線的最高點(diǎn)C離路面AA1的距離為8m.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求出表示拋物線的函數(shù)表達(dá)式;
(2)一大型貨車裝載設(shè)備后高為7m,寬為4m.如果隧道內(nèi)設(shè)雙向行駛車道,那么這輛貨車能否安全通過(guò)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com