(2003•上海)將兩塊三角板如圖放置,其中∠C=∠EDB=90°,∠A=45°,∠E=30°,AB=DE=6,求重疊部分四邊形DBCF的面積.

【答案】分析:觀察可看出,所求四邊形的面積等于等腰直角三角形的面積減去S△ADF,從而我們只要求出這兩個三角形的面積即可,這要求我們綜合利用解直角三角形,直角三角形的性質(zhì)和三角函數(shù)的靈活運用來解答.
解答:解:在△EDB中,
∵∠EDB=90°,∠E=30°,DE=6,
∴DB=DE•tan30°=6×=2,
∴AD=AB-DB=6-2
又∵∠A=45°,∠AFD=45°,得FD=AD.
∴S△ADF=AD2=×(6-22=24-12
在等腰直角三角形ABC中,斜邊AB=6,
∴AC=BC=3
∴S△ABC=AC2=9,
∴S四邊形DBCF=S△ABC-S△ADF=9-(24-12)=12-15.
點評:此題要求我們綜合利用解直角三角形,直角三角形的性質(zhì)和三角函數(shù)的靈活運用來解答.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2003•上海)已知一條直線經(jīng)過A(0,4)、點B(2,0),如圖.將這直線向左平移與x軸負半軸、y軸負半軸分別交于點C、點D,使DB=DC.求直線CD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年上海市中考數(shù)學試卷(解析版) 題型:解答題

(2003•上海)已知一條直線經(jīng)過A(0,4)、點B(2,0),如圖.將這直線向左平移與x軸負半軸、y軸負半軸分別交于點C、點D,使DB=DC.求直線CD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2003•上海)將兩塊三角板如圖放置,其中∠C=∠EDB=90°,∠A=45°,∠E=30°,AB=DE=6,求重疊部分四邊形DBCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2003•上海)如圖1所示,在正方形ABCD中,AB=1,是以點B為圓心,AB長為半徑的圓的一段弧,點E是邊AD上的任意一點(點E與點A、D不重合),過E作AC所在圓的切線,交邊DC于點F,G為切點.
(1)當∠DEF=45°時,求證:點G為線段EF的中點;
(2)設AE=x,F(xiàn)C=y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)圖2所示,將△DEF沿直線EF翻折后得△D1EF,當EF=時,討論△AD1D與△ED1F是否相似,如果相似,請加以證明;如果不相似,只要求寫出結(jié)論,不要求寫出理由.

查看答案和解析>>

同步練習冊答案