【題目】如圖,是的角平分線,在上,,若,,,則________________.
【答案】
【解析】
過(guò)點(diǎn)D作DM⊥AC于點(diǎn)M,作DN⊥AB于點(diǎn)N,設(shè)CM=,表示出CD和DM,再證明Rt△AMD≌Rt△AND,根據(jù)AB+CE=7,列出等式解出x,過(guò)點(diǎn)B作AC的平行線交AD延長(zhǎng)線于點(diǎn)F,證明△BFD∽△CAD,從而求出AE長(zhǎng).
過(guò)點(diǎn)D作DM⊥AC于點(diǎn)M,作DN⊥AB于點(diǎn)N,如圖,
設(shè)CM=,
∵,
∴CD=7x,
∴,
∵AD平分∠BAC,
∴DN=DM=3x,
∵BD=3,
∴,
∵AD=DE,
∴,
在Rt△AMD和Rt△AND中,
∴Rt△AMD≌Rt△AND(HL),
∴AM=AN,
∴AN=EM,
∵AB+CE=7,
∴BN+AN+CE=7,
∴BN+EM+CE=7,
∴BN+CM=7,
∴BN=7-CM,
∴,
∴,
解得:,
∴CD=,,,
過(guò)點(diǎn)B作AC的平行線交AD延長(zhǎng)線于點(diǎn)F,
則∠F=∠CAD,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BAD=∠F,
∴BF=AB,
∵BF∥AC,
∴△BFD∽△CAD,
∴,
∴,
∴,
設(shè)AN=AM=y,則AB=AN+BN=,
AC=AM+CM=,
∴,
解得:,
∴AE=2y,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(0,)為圓心,以長(zhǎng)為半徑作M交x軸于A.B兩點(diǎn),交y軸于C.D兩點(diǎn),連接AM并延長(zhǎng)交M于P點(diǎn),連接PC交x軸于E.
(1)求點(diǎn)C.P的坐標(biāo);
(2)求證:BE=2OE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,AB=10,連接BD,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對(duì)角線BD交于點(diǎn)E,連接EC.
(1)求證:AE=CE;
(2)若sin∠ABD=,當(dāng)點(diǎn)P在線段BC上時(shí),若BP=4,求△PEC的面積;
(3)若∠ABC=45°,當(dāng)點(diǎn)P在線段BC的延長(zhǎng)線上時(shí),請(qǐng)直接寫(xiě)出△PEC是等腰三角形時(shí)BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以原點(diǎn)O為圓心,3為半徑的圓與x軸分別交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),P是半徑OB上一點(diǎn),過(guò)P且垂直于AB的直線與⊙O分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的上方),直線AC,DB交于點(diǎn)E.若AC:CE=1:2.
(1)求點(diǎn)P的坐標(biāo);
(2)求過(guò)點(diǎn)A和點(diǎn)E,且頂點(diǎn)在直線CD上的拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E兩點(diǎn)分別在AC,BC上,且DE∥AB,將△CDE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn):當(dāng)α=0°時(shí),的值為 ;
(2)拓展探究:當(dāng)0°≤α<360°時(shí),若△EDC旋轉(zhuǎn)到如圖2的情況時(shí),求出的值;
(3)問(wèn)題解決:當(dāng)△EDC旋轉(zhuǎn)至A,B,E三點(diǎn)共線時(shí),若設(shè)CE=5,AC=4,直接寫(xiě)出線段BE的長(zhǎng) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,為直徑,弦交于點(diǎn)、,連接、,.
(1)如圖①,求的度數(shù);
(2)如圖②,弦交于點(diǎn).在上取點(diǎn),連接、和,使,求證:;
(3)如圖③,在(2)的條件下,,的直徑為,連接,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:對(duì)于線段和點(diǎn),當(dāng),且時(shí),稱點(diǎn)為線段的“等距點(diǎn)”.特別地,當(dāng),且時(shí),稱點(diǎn)為線段的“強(qiáng)等距點(diǎn)”.在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為.
(1)有4個(gè)點(diǎn):,,,.線段的“等距點(diǎn)”是 ;其中線段的“強(qiáng)等距點(diǎn)”是 .
(2)設(shè)第四象限有一點(diǎn),點(diǎn)是線段的“強(qiáng)等距點(diǎn)”.
①當(dāng)時(shí),求點(diǎn)的坐標(biāo);
②當(dāng)點(diǎn)又為線段的“等距點(diǎn)”時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在中,,點(diǎn)在邊上,點(diǎn)在邊上,,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn).
(1)如圖1,當(dāng)時(shí):①的度數(shù)為__________;②求證;;
(2)如圖2,當(dāng)時(shí),求的值(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車(chē)庫(kù).如圖是停車(chē)庫(kù)坡道入口的設(shè)計(jì)圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點(diǎn)C在DE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫(xiě)有:限高 米).如果進(jìn)入該車(chē)庫(kù)車(chē)輛的高度不能超過(guò)線段CF的長(zhǎng),則該停車(chē)庫(kù)限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com